• Title/Summary/Keyword: Compensation Vectors

Search Result 85, Processing Time 0.024 seconds

Performance Improvement of Map Matching Using Compensation Vectors (보정벡터를 이용한 맵 매칭의 성능 향상)

  • Ahn Do-Rang;Lee Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • Most car navigation systems(CNS) estimate the vehicle's location using global positioning system(GPS) or dead reckoning(DR) system. However, the estimated location has undesirable errors because of various noise sources such as unpredictable GPS noises. As a result, the measured position is not lying on the road, although the vehicle is known to be restricted on the road network. The purpose of map matching is to locate the vehicle's position on the road network where the vehicle is most likely to be positioned. In this paper, we analyze some general map matching algorithms first. Then, we propose a map matching method using compensation vectors to improve the performance of map matching. The proposed method calculates a compensation vector from the discrepancy between a measured position and an estimated position. The compensation vector and a newly measured position are to be used to determine the next estimation. To show the performance improvement of the map matching using compensation vectors, the real time map matching experiments are performed. The real road experiments demonstrate the effectiveness and applicability of the proposed map matching.

Joint Overlapped Block Motion Compensation Using Eight-Neighbor Block Motion Vectors for Frame Rate Up-Conversion

  • Li, Ran;Wu, Minghu;Gan, Zongliang;Cui, Ziguan;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2448-2463
    • /
    • 2013
  • The traditional block-based motion compensation methods in frame rate up-conversion (FRUC) only use a single uniquely motion vector field. However, there will always be some mistakes in the motion vector field whether the advanced motion estimation (ME) and motion vector analysis (MA) algorithms are performed or not. Once the motion vector field has many mistakes, the quality of the interpolated frame is severely affected. In order to solve the problem, this paper proposes a novel joint overlapped block motion compensation method (8J-OBMC) which adopts motion vectors of the interpolated block and its 8-neighbor blocks to jointly interpolate the target block. Since the smoothness of motion filed makes the motion vectors of 8-neighbor blocks around the interpolated block quite close to the true motion vector of the interpolated block, the proposed compensation algorithm has the better fault-tolerant capability than traditional ones. Besides, the annoying blocking artifacts can also be effectively suppressed by using overlapped blocks. Experimental results show that the proposed method is not only robust to motion vectors estimated wrongly, but also can to reduce blocking artifacts in comparison with existing popular compensation methods.

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Machine Tool Error Compensation by using Measuring Plates (측정플레이트를 이용한 공작기계 오차보정)

  • 양종태;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.187-192
    • /
    • 1993
  • Thermal deformation causes large amount of machine tool errors. In order to compensate for thermal and geometric errors of the machine tool an off-line geometric adaptive control (GAC) scheme was developed. THe GAC method was realized by using a measuring plate made of precision spheres. Error vectors and volumetric errors were measured by the measuring plate. Error compensation models were obtained from error vectors and a kinematic chain of machine tools. Reliability of the GAC system of thermal and geometric errors were confrimed by large amount of experiments.

  • PDF

Object-based Stereo Sequence Coding using Disparity and Motion Vector Relationship (변이-움직임 벡터의 상관관계를 이용한 객체기반 스테레오 동영상 부호화)

  • 박찬희;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.238-247
    • /
    • 2002
  • In this paper, we propose an object-based stereo sequence compression technique using disparity-motion vector relationship. The proposed method uses the coherence of motion vectors and disparity vectors in the left and right Image sequences. After two motion vectors and one disparity vector ate computed using FBMA(Fixed Block Matching Algorithm), the disparity vector of the current stereoscopic pall is computed by disparity-motion vector relationship with vectors which are previously estimated. Moreover, a vector regularization technique is applied in order to obtain reliable vectors. For an object-based coding. the object is defined and coded in terms of layers of VOP such as in MPEG-4. we present a method using disparity and motion vector relationship for extending two-frame compensation into three-frame compensation method for prediction coding of B-VOP. The proposed algorithm shows a high performance when comparing with a conventional method.

Block-based Motion Vector Smoothing for Nonrigid Moving Objects (비정형성 등속운동 객체의 움직임 추정을 위한 블록기반 움직임 평활화)

  • Sohn, Young-Wook;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.47-53
    • /
    • 2007
  • True motion estimation is necessary for deinterlacing, frame-rate conversion, and film judder compensation. There have been several block-based approaches to find true motion vectors by tracing minimum sum-of-absolute-difference (SAD) values by considering spatial and temporal consistency. However, the algorithms cannot find robust motion vectors when the texture of objects is changed. To find the robust motion vectors in the region, a recursive vector selection scheme and an adaptive weighting parameter are proposed. Previous frame vectors are recursively averaged to be utilized for motion error region. The weighting parameter controls fidelity to input vectors and the recursively averaged ones, where the input vectors come from the conventional estimators. If the input vectors are not reliable, then the mean vectors of the previous frame are used for temporal consistency. Experimental results show more robust motion vectors than those of the conventional methods in time-varying texture objects.

Integration of Motion Compensation Algorithm for Predictive Video Coding (예측 비디오 코딩을 위한 통합 움직임 보상 알고리즘)

  • Eum, Ho-Min;Park, Geun-Soo;Song, Moon-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.85-96
    • /
    • 1999
  • In a number of predictive video compression standards, the motion is compensated by the block-based motion compensation (BMC). The effective motion field used for the prediction by the BMC is obviously discontinuous since one motion vector is used for the entire macro-block. The usage of discontinuous motion field for the prediction causes the blocky artifacts and one obvious approach for eliminating such artifacts is to use a smoothed motion field. The optimal procedure will depend on the type of motion within the video. In this paper, several procedures for the motion vectors are considered. For any interpolation or approaches, however, the motion vectors as provided by the block matching algorithm(BMA) are no longer optimal. The optimum motion vectors(still one per macro-block) must minimize the of the displaced frame difference (DFD). We propose a unified algorithm that computes the optimum motion vectors to minimize the of the DFD using a conjugate gradient search. The proposed algorithm has been implemented and tested for the affine transformation based motion compensation (ATMC), the bilinear transformation based motion compensation (BTMC) and our own filtered motion compensation(FMC). The performance of these different approaches will be compared against the BMC.

  • PDF

A Study on the Subband Coding System Using Motion Compensation Techniques (이동 보상 기법을 이용한 서브밴드 부호화 시스템에 관한 연구)

  • 이기승;박용철;서정태;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.99-111
    • /
    • 1994
  • A motion picture compression scheme using subband coding with motion compensation is presneted in this paper. A hierarchical subband decomposition is used to split the image signal into 10 subbands with a 3-layer pyramid structure and motion compensation is used in each band. However, in this case, motion vector information is drastically increased; therefore, initial motion vectors are estimated in the highest pyramid and motion vectors are refined using the reconsructed subband signal in each layer. Simulation results show that the proposed method compares favorably in terms of prediction error energy and side informatio with methods requiring additional information. Images recostructed from the proposed method show good quality compared to those reconstructed using blockwise DCT.

  • PDF

An Improvement of Korean Speech Recognition Using a Compensation of the Speaking Rate by the Ratio of a Vowel length (모음길이 비율에 따른 발화속도 보상을 이용한 한국어 음성인식 성능향상)

  • 박준배;김태준;최성용;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.195-198
    • /
    • 2003
  • The accuracy of automatic speech recognition system depends on the presence of background noise and speaker variability such as sex, intonation of speech, and speaking rate. Specially, the speaking rate of both inter-speaker and intra-speaker is a serious cause of mis-recognition. In this paper, we propose the compensation method of the speaking rate by the ratio of each vowel's length in a phrase. First the number of feature vectors in a phrase is estimated by the information of speaking rate. Second, the estimated number of feature vectors is assigned to each syllable of the phrase according to the ratio of its vowel length. Finally, the process of feature vector extraction is operated by the number that assigned to each syllable in the phrase. As a result the accuracy of automatic speech recognition was improved using the proposed compensation method of the speaking rate.

  • PDF

Volumetic Error Compensation of a Coordinate Measuring Machine using a Software Method (3차원 좌표 측정기의 Software에 의한 Volumetric 오차 교정)

  • Park, June-Ho;Lee, Eung-Suk;Yang, Jong-Hwa;Cho, So-Hyug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 1994
  • A volumetric error compensation method was stueide with measuring systematic error of a Coordinate Measuring Machine(CMM). The volumetric error equations were proposed for a Moving Bridge type CMM. Using the error equations, error vectors in the measuring volume were corrected by a software method. The CMM was controlled by the compensation program separately in the measuring and moving function of the CMM proving. The linear accuracy of the CMM was measured by the Laser Interferometer and compared with the data before the volumetric error compensation. This method was proved as low cost and effective to reduce the systematic error of the CMM, as no hardware modification is required.

  • PDF