• Title/Summary/Keyword: Compensated matching network

Search Result 2, Processing Time 0.014 seconds

Studies on S-band Broadband Amplifier using compensated matching network (정합회로 보상 방법을 이용한 S-밴드용 광대역 증폭기 연구)

  • Kim, Jin-Sung;An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.6
    • /
    • pp.247-252
    • /
    • 2003
  • In this paper, we have designed and fabricated a broadband 2-stage MMIC amplifier. Broadband characteristics could be obtained by compensated matching networks in a 2-stage amplifier design. This method is compensating low gains at lower frequencies in the 1st-stage with higher gains at lower frequencies in the 2nd- stage and then finally flat gains are obtained in the wide frequency ranges. Also, we have obtained not only broadband characteristics but also high gain using compensation matching network. The fabricated amplifier is measured by attaching on the test PCB(Printed Circuits Board). The measurement results are bandwidth of 1.1~2.8 GHz, S$_{21}$ gain of 11.1$\pm$0.3 ㏈ and P1㏈ of 12.6 ㏈m at 2.4 GHz.

Integration of Motion Compensation Algorithm for Predictive Video Coding (예측 비디오 코딩을 위한 통합 움직임 보상 알고리즘)

  • Eum, Ho-Min;Park, Geun-Soo;Song, Moon-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.85-96
    • /
    • 1999
  • In a number of predictive video compression standards, the motion is compensated by the block-based motion compensation (BMC). The effective motion field used for the prediction by the BMC is obviously discontinuous since one motion vector is used for the entire macro-block. The usage of discontinuous motion field for the prediction causes the blocky artifacts and one obvious approach for eliminating such artifacts is to use a smoothed motion field. The optimal procedure will depend on the type of motion within the video. In this paper, several procedures for the motion vectors are considered. For any interpolation or approaches, however, the motion vectors as provided by the block matching algorithm(BMA) are no longer optimal. The optimum motion vectors(still one per macro-block) must minimize the of the displaced frame difference (DFD). We propose a unified algorithm that computes the optimum motion vectors to minimize the of the DFD using a conjugate gradient search. The proposed algorithm has been implemented and tested for the affine transformation based motion compensation (ATMC), the bilinear transformation based motion compensation (BTMC) and our own filtered motion compensation(FMC). The performance of these different approaches will be compared against the BMC.

  • PDF