• Title/Summary/Keyword: Comparative genome analysis

Search Result 228, Processing Time 0.031 seconds

Spot the difference: Solving the puzzle of hidden pictures in the lizard genome for identification of regeneration factors

  • Chung, Jin Woong
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.249-254
    • /
    • 2016
  • All living things share some common life processes, such as growth and reproduction, and have the ability to respond to their environment. However, each type of organism has its own specialized way of managing biological events. Genetic sequences determine phenotypic and physiological traits. Based on genetic information, comparative genomics has been used to delineate the differences and similarities between various genomes, and significant progress has been made in understanding regenerative biology by comparing the genomes of a variety of lower animal models of regeneration, such as planaria, zebra fish, and newts. However, the genome of lizards has been relatively ignored until recently, even though lizards have been studied as an excellent amniote model of tissue regeneration. Very recently, whole genome sequences of lizards have been uncovered, and several attempts have been made to find regeneration factors based on genetic information. In this article, recent advances in comparative analysis of the lizard genome are introduced, and their biological implications and putative applications for regenerative medicine and stem cell biology are discussed.

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2003.10a
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea

  • PARK, Jongsun;XI, Hong;OH, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.1
    • /
    • pp.8-16
    • /
    • 2020
  • Complete chloroplast genome sequences provide detailed information about any structural changes of the genome, instances of phylogenetic reconstruction, and molecular markers for fine-scale analyses. Recent developments of next-generation sequencing (NGS) tools have led to the rapid accumulation of genomic data, especially data pertaining to chloroplasts. Short reads deposited in public databases such as the Sequence Read Archive of the NCBI are open resources, and the corresponding chloroplast genomes are yet to be completed. The V. dilatatum complex in Korea consists of four morphologically similar species: V. dilatatum, V. erosum, V. japonicum, and V. wrightii. Previous molecular phylogenetic analyses based on several DNA regions did not resolve the relationship at the species level. In order to examine the level of variation of the chloroplast genome in the V. dilatatum complex, raw reads of V. dilatatum deposited in the NCBI database were used to reconstruct the whole chloroplast genome, with these results compared to the genomes of V. erosum, V. japonicum, and three other species in Viburnum. These comparative genomics results found no significant structural changes in Viburnum. The degree of interspecific variation among the species in the V. dilatatum complex is very low, suggesting that the species of the complex may have been differentiated recently. The species of the V. dilatatum complex share large unique deletions, providing evidence of close relationships among the species. A phylogenetic analysis of the entire genome of the Viburnum showed that V. dilatatum is a sister to one of two accessions of V. erosum, making V. erosum paraphyletic. Given that the overall degree of variation among the species in the V. dilatatum complex is low, the chloroplast genome may not provide a phylogenetic signal pertaining to relationships among the species.

Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics

  • Son, Seungwoo;Lee, Raham;Park, Seung-Moon;Lee, Sung Ho;Lee, Hak-Kyo;Kim, Yangseon;Shin, Donghyun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1411-1422
    • /
    • 2021
  • Lactobacillus acidophilus is a gram-positive, microaerophilic, and acidophilic bacterial species. L. acidophilus strains in the gastrointestinal tracts of humans and other animals have been profiled, but strains found in the canine gut have not been studied yet. Our study helps in understanding the genetic features of the L. acidophilus C5 strain found in the canine gut, determining its adaptive features evolved to survive in the canine gut environment, and in elucidating its probiotic functions. To examine the canine L. acidophilus C5 genome, we isolated the C5 strain from a Korean dog and sequenced it using PacBio SMRT sequencing technology. A comparative genomic approach was used to assess genetic relationships between C5 and six other strains and study the distinguishing features related to different hosts. We found that most genes in the C5 strain were related to carbohydrate transport and metabolism. The pan-genome of seven L. acidophilus strains contained 2,254 gene families, and the core genome contained 1,726 gene families. The phylogenetic tree of the core genes in the canine L. acidophilus C5 strain was very close to that of two strains (DSM20079 and NCFM) from humans. We identified 30 evolutionarily accelerated genes in the L. acidophilus C5 strain in the ratio of non-synonymous to synonymous substitutions (dN/dS) analysis. Five of these thirty genes were associated with carbohydrate transport and metabolism. This study provides insights into genetic features and adaptations of the L. acidophilus C5 strain to survive the canine intestinal environment. It also suggests that the evolution of the L. acidophilus genome is closely related to the host's evolutionary adaptation process.

Comparative Genomics Study of Interferon-$\alpha$ Receptor-1 in Humans and Chimpanzees

  • Kim, Il-Chul;Chi, Seung-Wook;Kim, Dae-Won;Choi, Sang-Haeng;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.142-148
    • /
    • 2005
  • The immune response-related genes have been suggested to be the most favorable genes for positive selection during evolution. Comparing the entire DNA sequence of chimpanzee chromosome 22 (PTR22) with human chromosome 21 (HSA21), we have identified 15 orthologs having indel in their coding sequences. Among them, interferon-${\alpha}$ receptor-1 gene (IFNAR1), an immuneresponse-related gene, is subjected to comparative genomic analysis. Chimpanzee IFNAR1 showed the same genomic structure as human IFNAR1 (11 exons and 10 introns) except the 3 bp insertion in exon 4. The sequence alignment of IFNAR1 coding sequence indicated that 'ISPP' amino acid sequence motif is highly conserved in chimpanzee and other animals including mouse and chicken. However, the human IFNAR1 shows that one proline residue is missing in the sequence motif. The homology modeling of the IFNAR1 structures suggests that the proline deletion in human IFNAR1 leads to the formation of the following ${\alpha}$-helix, whereas two sequential prolines in chimpanzee IFNAR1 inhibit it. As a result, human IFNAR1 may adopt a characteristic structure distinct from chimpanzee IFNAR1. This human specific trait could contribute to specific immune response in the most optimized manner for humans. Further molecular biological studies on the IFNAR1 will help us to gain insights into the molecular implication of species-specific host-pathogen interaction in primate evolution.

Comparative Genome Analysis of Sphingomonas chungbukensis DJ77

  • Hai Dang Sy;Kim Young-Pil;Choi Bum-Sun;Um Hyun-Ju;Kim Young-Chang
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.175-179
    • /
    • 2002
  • The assemblies of our partial genomic sequence data of Sphingomonas chungbukensis DJ77, with the total size of 877,928 bp, was done by TIGR Assembler. The total size of our current obtained contigs was about 0.73 Mb. A comparative genome analysis between our uncompleted genome and the other completed genomes was performed by taking advantage of the availability of multiple complete genomes in COGs database (Clusters of Orthologous Groups of proteins) to produce the genomic prediction of our S. chungbukensis DJ77. This analysis based on homologues search among completed genomes provides good initial step to our better assigning putative function to predicted coding sequences.

  • PDF

REPEATOME: A Database for Repeat Element Comparative Analysis in Human and Chimpanzee

  • Woo, Tae-Ha;Hong, Tae-Hui;Kim, Sang-Soo;Chung, Won-Hyong;Kang, Hyo-Jin;Kim, Chang-Bae;Seo, Jung-Min
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.179-187
    • /
    • 2007
  • An increasing number of primate genomes are being sequenced. A direct comparison of repeat elements in human genes and their corresponding chimpanzee orthologs will not only give information on their evolution, but also shed light on the major evolutionary events that shaped our species. We have developed REPEATOME to enable visualization and subsequent comparisons of human and chimpanzee repeat elements. REPEATOME (http://www.repeatome.org/) provides easy access to a complete repeat element map of the human genome, as well as repeat element-associated information. It provides a convenient and effective way to access the repeat elements within or spanning the functional regions in human and chimpanzee genome sequences. REPEATOME includes information to compare repeat elements and gene structures of human genes and their counterparts in chimpanzee. This database can be accessed using comparative search options such as intersection, union, and difference to find lineage-specific or common repeat elements. REPEATOME allows researchers to perform visualization and comparative analysis of repeat elements in human and chimpanzee.

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

A Genomics Tool for Microbial Genome Comparison Using BLAST/FASTA (BLAST/FASTA를 활용한 미생물 유전체 비교용 도구의 개발)

  • Tae, Hongseok;Lee, Daesang;Park, Wan;Park, Kiejung
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.267-275
    • /
    • 2002
  • We have developed GComp as an analysis tool for microbial genome comparison. This tool exploits BLAST or FASTA as a preprocessing program for local alignments to detect homologous regions, parses the homology search results, and generates tables and files to show homology relationship between two genomes at a glance. The interface for graphical representation of the comparative genomic analysis has been also implemented. Our test cases shows that the program can be useful in practice for intuitive and quantitative comparison of microbial genome sequence pairs as well as self-genome analysis. A few additional features have been devised and designed, which will be added in the further development.