• Title/Summary/Keyword: Company Value

Search Result 1,548, Processing Time 0.029 seconds

The Relations between Financial Constraints and Dividend Smoothing of Innovative Small and Medium Sized Enterprises (혁신형 중소기업의 재무적 제약과 배당스무딩간의 관계)

  • Shin, Min-Shik;Kim, Soo-Eun
    • Korean small business review
    • /
    • v.31 no.4
    • /
    • pp.67-93
    • /
    • 2009
  • The purpose of this paper is to explore the relations between financial constraints and dividend smoothing of innovative small and medium sized enterprises(SMEs) listed on Korea Securities Market and Kosdaq Market of Korea Exchange. The innovative SMEs is defined as the firms with high level of R&D intensity which is measured by (R&D investment/total sales) ratio, according to Chauvin and Hirschey (1993). The R&D investment plays an important role as the innovative driver that can increase the future growth opportunity and profitability of the firms. Therefore, the R&D investment have large, positive, and consistent influences on the market value of the firm. In this point of view, we expect that the innovative SMEs can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. And also, we expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Aivazian et al.(2006) exert that the financial unconstrained firms with the high accessibility to capital market can adjust dividend payment faster than the financial constrained firms. We collect the sample firms among the total SMEs listed on Korea Securities Market and Kosdaq Market of Korea Exchange during the periods from January 1999 to December 2007 from the KIS Value Library database. The total number of firm-year observations of the total sample firms throughout the entire period is 5,544, the number of firm-year observations of the dividend firms is 2,919, and the number of firm-year observations of the non-dividend firms is 2,625. About 53%(or 2,919) of these total 5,544 observations involve firms that make a dividend payment. The dividend firms are divided into two groups according to the R&D intensity, such as the innovative SMEs with larger than median of R&D intensity and the noninnovative SMEs with smaller than median of R&D intensity. The number of firm-year observations of the innovative SMEs is 1,506, and the number of firm-year observations of the noninnovative SMEs is 1,413. Furthermore, the innovative SMEs are divided into two groups according to level of financial constraints, such as the financial unconstrained firms and the financial constrained firms. The number of firm-year observations of the former is 894, and the number of firm-year observations of the latter is 612. Although all available firm-year observations of the dividend firms are collected, deletions are made in the case of financial industries such as banks, securities company, insurance company, and other financial services company, because their capital structure and business style are widely different from the general manufacturing firms. The stock repurchase was involved in dividend payment because Grullon and Michaely (2002) examined the substitution hypothesis between dividends and stock repurchases. However, our data structure is an unbalanced panel data since there is no requirement that the firm-year observations data are all available for each firms during the entire periods from January 1999 to December 2007 from the KIS Value Library database. We firstly estimate the classic Lintner(1956) dividend adjustment model, where the decision to smooth dividend or to adopt a residual dividend policy depends on financial constraints measured by market accessibility. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between current payout rato and target payout ratio each year. In the Lintner model, dependent variable is the current dividend per share(DPSt), and independent variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt). We hypothesized that firms adjust partially the gap between the current dividend per share(DPSt) and the target payout ratio(Ω) each year, when the past dividend per share(DPSt-1) deviate from the target payout ratio(Ω). We secondly estimate the expansion model that extend the Lintner model by including the determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory. In the expansion model, dependent variable is the current dividend per share(DPSt), explanatory variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt), and control variables are the current capital expenditure ratio(CEAt), the current leverage ratio(LEVt), the current operating return on assets(ROAt), the current business risk(RISKt), the current trading volume turnover ratio(TURNt), and the current dividend premium(DPREMt). In these control variables, CEAt, LEVt, and ROAt are the determinants suggested by the residual dividend theory and the agency theory, ROAt and RISKt are the determinants suggested by the dividend signaling theory, TURNt is the determinant suggested by the transactions cost theory, and DPREMt is the determinant suggested by the catering theory. Furthermore, we thirdly estimate the Lintner model and the expansion model by using the panel data of the financial unconstrained firms and the financial constrained firms, that are divided into two groups according to level of financial constraints. We expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, because the former can finance more easily the investment funds through the market accessibility than the latter. We analyzed descriptive statistics such as mean, standard deviation, and median to delete the outliers from the panel data, conducted one way analysis of variance to check up the industry-specfic effects, and conducted difference test of firms characteristic variables between innovative SMEs and noninnovative SMEs as well as difference test of firms characteristic variables between financial unconstrained firms and financial constrained firms. We also conducted the correlation analysis and the variance inflation factors analysis to detect any multicollinearity among the independent variables. Both of the correlation coefficients and the variance inflation factors are roughly low to the extent that may be ignored the multicollinearity among the independent variables. Furthermore, we estimate both of the Lintner model and the expansion model using the panel regression analysis. We firstly test the time-specific effects and the firm-specific effects may be involved in our panel data through the Lagrange multiplier test that was proposed by Breusch and Pagan(1980), and secondly conduct Hausman test to prove that fixed effect model is fitter with our panel data than the random effect model. The main results of this study can be summarized as follows. The determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory explain significantly the dividend policy of the innovative SMEs. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between the current payout ratio and the target payout ratio each year. In the core variables of Lintner model, the past dividend per share has more effects to dividend smoothing than the current earnings per share. These results suggest that the innovative SMEs maintain stable and long run dividend policy which sustains the past dividend per share level without corporate special reasons. The main results show that dividend adjustment speed of the innovative SMEs is faster than that of the noninnovative SMEs. This means that the innovative SMEs with high level of R&D intensity can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. The other main results show that dividend adjustment speed of the financial unconstrained SMEs is faster than that of the financial constrained SMEs. This means that the financial unconstrained firms with high accessibility to capital market can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Futhermore, the other additional results show that dividend adjustment speed of the innovative SMEs classified by the Small and Medium Business Administration is faster than that of the unclassified SMEs. They are linked with various financial policies and services such as credit guaranteed service, policy fund for SMEs, venture investment fund, insurance program, and so on. In conclusion, the past dividend per share and the current earnings per share suggested by the Lintner model explain mainly dividend adjustment speed of the innovative SMEs, and also the financial constraints explain partially. Therefore, if managers can properly understand of the relations between financial constraints and dividend smoothing of innovative SMEs, they can maintain stable and long run dividend policy of the innovative SMEs through dividend smoothing. These are encouraging results for Korea government, that is, the Small and Medium Business Administration as it has implemented many policies to commit to the innovative SMEs. This paper may have a few limitations because it may be only early study about the relations between financial constraints and dividend smoothing of the innovative SMEs. Specifically, this paper may not adequately capture all of the subtle features of the innovative SMEs and the financial unconstrained SMEs. Therefore, we think that it is necessary to expand sample firms and control variables, and use more elaborate analysis methods in the future studies.

The Effects of the Perceived Motivation Type toward Corporate Social Responsibility Activities on Customer Loyalty (기업사회책임활동적인지인지동기류형대고객충성도적영향(企业社会责任活动的认知认知动机类型对顾客忠诚度的影响))

  • Kim, Kyung-Jin;Park, Jong-Chul
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.3
    • /
    • pp.5-16
    • /
    • 2009
  • Corporate social responsibility (CSR) activities have been shown to be potential factors that can improve corporate image and increase the ability of corporations to compete. However, most previous studies related to CSR activities investigated how these activities influence product and corporate evaluation, as well as corporate image. In addition, some researchers treated consumers' perceptions of corporate motives as moderator variables in evaluating the relationship between corporate social responsibilities and consumer response. However, motive-based theories have some weaknesses. Corporate social responsibility activities cause two motives(egoistic vs. altruistic) for consumers, but recently, Vlachos et al. (2008) argued that these motives should be segmented. Thus, it is possible to transform the original theory into a modified theory model (persuasion knowledge model, PKM). Vlachos et al. (2008) segmented corporate social responsibility motives into four types and compared the effects of these motives on customer loyalty. Prior studies have proved that CSR activities with positive motives have positive influences on customer loyalty. However, the psychological reasons underlying this finding have not been determined empirically. Thus, the objectives of this research are twofold. First, we attempt to determine why most customers favor companies that they feel have positive motives for their corporate social responsibility activities. Second, we attempt to measure the effects of consumers' reciprocity when society benefits from corporate social responsibility activities. The following research hypotheses are constructed. H1: Values-driven motives for corporate social responsibility activities have a positive influence on the perceived reciprocity. H2: Stakeholder-driven motives for corporate social responsibility activities have a negative influence on the perceived reciprocity. H3: Egoistic-driven motives for corporate social responsibility activities have a negative influence on perceived reciprocity. H4: Strategic-driven motives for corporate social responsibility activities have a negative influence on perceived reciprocity. H5: Perceived reciprocity for corporate social responsibility activities has a positive influence on consumer loyalty. A single company is selected as a research subject to understand how the motives behind corporate social responsibility influence consumers' perceived reciprocity and customer loyalty. A total sample of 200 respondents was selected for a pilot test. In addition, to ensure a consistent response, we ensured that the respondents were older than 20 years of age. The surveys of 172 respondents (males-82, females-90) were analyzed after 28 invalid questionnaires were excluded. Based on our cutoff criteria, the model fit the data reasonably well. Values-driven motives for corporate social responsibility activities had a positive effect on perceived reciprocity (t = 6.75, p < .001), supporting H1. Morales (2005) also found that consumers appreciate a company's social responsibility efforts and the benefits provided by these efforts to society. Stakeholder-driven motives for corporate social responsibility activities did not affect perceived reciprocity (t = -.049, p > .05). Thus, H2 was rejected. Egoistic-driven motives (t = .3.11, p < .05) and strategic-driven (t = -4.65, p < .05) motives had a negative influence on perceived reciprocity, supporting H3 and H4, respectively. Furthermore, perceived reciprocity had a positive influence on consumer loyalty (t = 4.24, p < .05), supporting H5. Thus, compared with the general public, undergraduate students appear to be more influenced by egoistic-driven motives. We draw the following conclusions from our research findings. First, value-driven attributions have a positive influence on perceived reciprocity. However, stakeholder-driven attributions have no significant effects on perceived reciprocity. Moreover, both egoistic-driven attributions and strategic-driven attributions have a negative influence on perceived reciprocity. Second, when corporate social responsibility activities align with consumers' reciprocity, the efforts directed towards social responsibility activities have a positive influence on customer loyalty. In this study, we examine whether the type of motivation affects consumer responses to CSR, and in particular, we evaluate how CSR motives can influence a key internal factor (perceived reciprocity) and behavioral consumer outcome (customer loyalty). We demonstrate that perceived reciprocity plays a mediating role in the relationship between CSR motivation and customer loyalty. Our study extends the research on consumer CSR-inferred motivations, positing them as a direct indicator of consumer responses. Furthermore, we convincingly identify perceived reciprocity as a sub-process mediating the effect of CSR attributions on customer loyalty. Future research investigating the ultimate behavior and financial impact of CSR should consider that the impacts of CSR also stem from perceived reciprocity. The results of this study also have important managerial implications. First, the central role that reciprocity plays indicates that managers should routinely measure how much their socially responsible actions create perceived reciprocity. Second, understanding how consumers' perceptions of CSR corporate motives relate to perceived reciprocity and customer loyalty can help managers to monitor and enhance these consumer outcomes through marketing initiatives and management of CSR-induced attribution processes. The results of this study will help corporations to understand the relative importance of the four different motivations types in influencing perceived reciprocity.

  • PDF

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

NFC-based Smartwork Service Model Design (NFC 기반의 스마트워크 서비스 모델 설계)

  • Park, Arum;Kang, Min Su;Jun, Jungho;Lee, Kyoung Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.157-175
    • /
    • 2013
  • Since Korean government announced 'Smartwork promotion strategy' in 2010, Korean firms and government organizations have started to adopt smartwork. However, the smartwork has been implemented only in a few of large enterprises and government organizations rather than SMEs (small and medium enterprises). In USA, both Yahoo! and Best Buy have stopped their flexible work because of its reported low productivity and job loafing problems. In addition, according to the literature on smartwork, we could draw obstacles of smartwork adoption and categorize them into the three types: institutional, organizational, and technological. The first category of smartwork adoption obstacles, institutional, include the difficulties of smartwork performance evaluation metrics, the lack of readiness of organizational processes, limitation of smartwork types and models, lack of employee participation in smartwork adoption procedure, high cost of building smartwork system, and insufficiency of government support. The second category, organizational, includes limitation of the organization hierarchy, wrong perception of employees and employers, a difficulty in close collaboration, low productivity with remote coworkers, insufficient understanding on remote working, and lack of training about smartwork. The third category, technological, obstacles include security concern of mobile work, lack of specialized solution, and lack of adoption and operation know-how. To overcome the current problems of smartwork in reality and the reported obstacles in literature, we suggest a novel smartwork service model based on NFC(Near Field Communication). This paper suggests NFC-based Smartwork Service Model composed of NFC-based Smartworker networking service and NFC-based Smartwork space management service. NFC-based smartworker networking service is comprised of NFC-based communication/SNS service and NFC-based recruiting/job seeking service. NFC-based communication/SNS Service Model supplements the key shortcomings that existing smartwork service model has. By connecting to existing legacy system of a company through NFC tags and systems, the low productivity and the difficulty of collaboration and attendance management can be overcome since managers can get work processing information, work time information and work space information of employees and employees can do real-time communication with coworkers and get location information of coworkers. Shortly, this service model has features such as affordable system cost, provision of location-based information, and possibility of knowledge accumulation. NFC-based recruiting/job-seeking service provides new value by linking NFC tag service and sharing economy sites. This service model has features such as easiness of service attachment and removal, efficient space-based work provision, easy search of location-based recruiting/job-seeking information, and system flexibility. This service model combines advantages of sharing economy sites with the advantages of NFC. By cooperation with sharing economy sites, the model can provide recruiters with human resource who finds not only long-term works but also short-term works. Additionally, SMEs (Small Medium-sized Enterprises) can easily find job seeker by attaching NFC tags to any spaces at which human resource with qualification may be located. In short, this service model helps efficient human resource distribution by providing location of job hunters and job applicants. NFC-based smartwork space management service can promote smartwork by linking NFC tags attached to the work space and existing smartwork system. This service has features such as low cost, provision of indoor and outdoor location information, and customized service. In particular, this model can help small company adopt smartwork system because it is light-weight system and cost-effective compared to existing smartwork system. This paper proposes the scenarios of the service models, the roles and incentives of the participants, and the comparative analysis. The superiority of NFC-based smartwork service model is shown by comparing and analyzing the new service models and the existing service models. The service model can expand scope of enterprises and organizations that adopt smartwork and expand the scope of employees that take advantages of smartwork.

Service Quality, Customer Satisfaction and Customer Loyalty of Mobile Communication Industry in China (중국이동통신산업중적복무질량(中国移动通信产业中的服务质量), 고객만의도화고객충성도(顾客满意度和顾客忠诚度))

  • Zhang, Ruijin;Li, Xiangyang;Zhang, Yunchang
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.269-277
    • /
    • 2010
  • Previous studies have shown that the most important factor affecting customer loyalty in the service industry is service quality. However, on the subject of whether service quality has a direct or indirect effect on customer loyalty, scholars' views apparently vary. Some studies suggest that service quality has a direct and fundamental influence on customer loyalty (Bai and Liu, 2002). However, others have shown that service quality not only directly affects customer loyalty, it also has an indirect impact on customer loyalty by influencing customer satisfaction and perceived value (Cronin, Brady, and Hult, 2000). Currently, there are few domestic articles that specifically address the relationship between service quality and customer loyalty in the mobile communication industry. Moreover, research has studied customer loyalty as a whole variable, rather than breaking it down further into multiple dimensions. Based on this analysis, this paper summarizes previous study results, establishes an effect mechanism model among service quality, customer satisfaction, and customer loyalty in the mobile communication industry, and presents a statistical test on model assumptions by using customer investigation data from Heilongjiang Mobile Company. It provides theoretical guidance for mobile service management based on the discussion of the hypothesis test results. For data collection, the sample comprised mobile users in Harbin city, and the survey was taken by random sampling. Out of a total of 300 questionnaires, 276 (92.9%) were recovered. After excluding invalid questionnaires, 249 remained, for an effective rate of 82.6 percent for the study. Cronbach's ${\alpha}$ coefficient was adapted to assess the scale reliability, and validity testing was conducted on the questionnaire from three aspects: content validity, construct validity. and convergent validity. The study tested for goodness of fit mainly from the absolute and relative fit indexes. From the hypothesis testing results, overall, four assumptions have not been supported. The ultimate affective relationship of service quality, customer satisfaction, and customer loyalty is demonstrated in Figure 2. On the whole, the service quality of the communication industry not only has a direct positive significant effect on customer loyalty, it also has an indirect positive significant effect on customer loyalty through service quality; the affective mechanism and extent of customer loyalty are different, and are influenced by each dimension of service quality. This study used the questionnaires of existing literature from home and abroad and tested them in empirical research, with all questions adapted to seven-point Likert scales. With the SERVQUAL scale of Parasuraman, Zeithaml, and Berry (1988), or PZB, as a reference point, service quality was divided into five dimensions-tangibility, reliability, responsiveness, assurance, and empathy-and the questions were simplified down to nineteen. The measurement of customer satisfaction was based mainly on Fornell (1992) and Wang and Han (2003), ending up with four questions. Based on the study’s three indicators of price tolerance, first choice, and complaint reaction were used to measure attitudinal loyalty, while repurchase intention, recommendation, and reputation measured behavioral loyalty. The collection and collation of literature data produced a model of the relationship among service quality, customer satisfaction, and customer loyalty in mobile communications, and China Mobile in the city of Harbin in Heilongjiang province was used for conducting an empirical test of the model and obtaining some useful conclusions. First, service quality in mobile communication is formed by the five factors mentioned earlier: tangibility, reliability, responsiveness, assurance, and empathy. On the basis of PZB SERVQUAL, the study designed a measurement scale of service quality for the mobile communications industry, and obtained these five factors through exploratory factor analysis. The factors fit basically with the five elements, indicating the concept of five elements of service quality for the mobile communications industry. Second, service quality in mobile communications has both direct and indirect positive effects on attitudinal loyalty, with the indirect effect being produced through the intermediary variable, customer satisfaction. There are also both direct and indirect positive effects on behavioral loyalty, with the indirect effect produced through two intermediary variables: customer satisfaction and attitudinal loyalty. This shows that better service quality and higher customer satisfaction will activate the attitudinal to service providers more active and show loyalty to service providers much easier. In addition, the effect mechanism of all dimensions of service quality on all dimensions of customer loyalty is different. Third, customer satisfaction plays a significant intermediary role among service quality and attitudinal and behavioral loyalty, indicating that improving service quality can boost customer satisfaction and make it easier for satisfied customers to become loyal customers. Moreover, attitudinal loyalty plays a significant intermediary role between service quality and behavioral loyalty, indicating that only attitudinally and behaviorally loyal customers are truly loyal customers. The research conclusions have some indications for Chinese telecom operators and others to upgrade their service quality. Two limitations to the study are also mentioned. First, all data were collected in the Heilongjiang area, so there might be a common method bias that skews the results. Second, the discussion addresses the relationship between service quality and customer loyalty, setting customer satisfaction as mediator, but does not consider other factors, like customer value and consumer features, This research will be continued in the future.

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

Development on Early Warning System about Technology Leakage of Small and Medium Enterprises (중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구)

  • Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 2017
  • Due to the rapid development of IT in recent years, not only personal information but also the key technologies and information leakage that companies have are becoming important issues. For the enterprise, the core technology that the company possesses is a very important part for the survival of the enterprise and for the continuous competitive advantage. Recently, there have been many cases of technical infringement. Technology leaks not only cause tremendous financial losses such as falling stock prices for companies, but they also have a negative impact on corporate reputation and delays in corporate development. In the case of SMEs, where core technology is an important part of the enterprise, compared to large corporations, the preparation for technological leakage can be seen as an indispensable factor in the existence of the enterprise. As the necessity and importance of Information Security Management (ISM) is emerging, it is necessary to check and prepare for the threat of technology infringement early in the enterprise. Nevertheless, previous studies have shown that the majority of policy alternatives are represented by about 90%. As a research method, literature analysis accounted for 76% and empirical and statistical analysis accounted for a relatively low rate of 16%. For this reason, it is necessary to study the management model and prediction model to prevent leakage of technology to meet the characteristics of SMEs. In this study, before analyzing the empirical analysis, we divided the technical characteristics from the technology value perspective and the organizational factor from the technology control point based on many previous researches related to the factors affecting the technology leakage. A total of 12 related variables were selected for the two factors, and the analysis was performed with these variables. In this study, we use three - year data of "Small and Medium Enterprise Technical Statistics Survey" conducted by the Small and Medium Business Administration. Analysis data includes 30 industries based on KSIC-based 2-digit classification, and the number of companies affected by technology leakage is 415 over 3 years. Through this data, we conducted a randomized sampling in the same industry based on the KSIC in the same year, and compared with the companies (n = 415) and the unaffected firms (n = 415) 1:1 Corresponding samples were prepared and analyzed. In this research, we will conduct an empirical analysis to search for factors influencing technology leakage, and propose an early warning system through data mining. Specifically, in this study, based on the questionnaire survey of SMEs conducted by the Small and Medium Business Administration (SME), we classified the factors that affect the technology leakage of SMEs into two factors(Technology Characteristics, Organization Characteristics). And we propose a model that informs the possibility of technical infringement by using Support Vector Machine(SVM) which is one of the various techniques of data mining based on the proven factors through statistical analysis. Unlike previous studies, this study focused on the cases of various industries in many years, and it can be pointed out that the artificial intelligence model was developed through this study. In addition, since the factors are derived empirically according to the actual leakage of SME technology leakage, it will be possible to suggest to policy makers which companies should be managed from the viewpoint of technology protection. Finally, it is expected that the early warning model on the possibility of technology leakage proposed in this study will provide an opportunity to prevent technology Leakage from the viewpoint of enterprise and government in advance.

Effect of Seasonal Distribution Temperature on Storability of Modified Atmosphere Packaged Baby Leaf Beet (계절별 수송 온도가 MA 포장한 어린잎 비트의 저장성에 미치는 영향)

  • Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Ko, Young-Wook;Kim, Yongduk;Hwang, Myung-Keun;Yu, Wanggun;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • The effects of distribution temperature due to season all changes on quality and storability of baby leaf beet (Beta vulgaris L.) was examined in modified atmosphere (MA) packages. The beet leaf had been harvested at the 10 cm leaf length stage and packaged with an oxygen transmission rate (OTR) film of $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ and then held at 4 different distribution temperatures which were $-2^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $30^{\circ}C$ for 5 hrs and then stored for 18 days at $8^{\circ}C$. The loss of fresh weight of packged baby leaf beet was lowest at the $4^{\circ}C$ treatment, and below 0.6% in all distribution temperature treatments. The atmosphere composition in packages did not show any significant differences among treatments. The oxygen conc. was the highest at 18.0% after the $4^{\circ}C$ treatment, carbon dioxide conc. showed the maximum value of 4% at the $30^{\circ}C$ and $-2^{\circ}C$ treatments, and ethylene conc. was highest at the $10^{\circ}C$ treatment after 10 days in storage. The hardness was the highest at the $4^{\circ}C$ treatment on the final storage day. The $4^{\circ}C$ treatment showed the highest visual quality and the lowest off-odor and aerobic plate count. Therefore, it is necessary to establish a low-temperature distribution system which is controlled under $4^{\circ}C$, because the baby leaf beet's storability and microbial growth are effected even during a short time of 5 hrs during the distribution process.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

The Relationship among Country of Origin, Brand Equity and Brand Loyalty: Comparison among USA, China and Korea (원산지효과, 상표자산 및 상표충성 간의 관계에 관한 연구: 미국, 중국, 한국의 비교분석)

  • Ko, Eun-Ju;Kim, Kyung-Hoon;Kim, Sook-Hyun;Li, Guo-Feng;Zou, Peng;Zhang, Hao
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • The marketing environment has become competitive to an extent that requires firms to target their products at markets that span national boundaries. However, competitive clout cannot be achieved in global consumer markets unless firms thoroughly understand and adequately respond to the core values and needs of those consumers. Brand equity is one of the most important assets to a company. Especially in sportswear markets, brand equity is the crucial value added to a product by its brand name. Factors such as country of origin also influence customer's attitude towards brand equity. Therefore, this paper discusses the relationship between country of origin effect and brand equity, and how they influence consumers' loyalty for respective brands. This paper focused on the sports shoes market, because it is an increasing area of opportunity for world manufacturers. The objectives of this study were the following. (1) Test the effect of country of origin on brand equity. (2) Test how brand equity influences consumers' brand loyalty. (3) Find whether there are differences in the effects of country of origin and brand equity among the three countries. (4) Find whether there are differences in the effects of country of origin and brand equity among the different lifestyles. Based on the review of literature results, the hypotheses are concluded as the following: H1-a: Country image has positive influence on country of origin. H1-b: Product perception has positive influence on country of origin. H2-a: Perceived quality has positive effect on brand equity. H2-b: Perceived price has positive effect on brand equity. H3: Country of origin has positive effect on brand equity. H4: Brand equity has a positive impact on brand loyalty. Research model was constructed (see Fig. 1). After data analysis, the following results were concluded: sports shoes purchase behavior showed significant differences among Korean, Chinese, and American consumers for favorite brand, purchased brand, purchased place, information usage, and favorite sports games. The results of this study also extend the research of the relationship among country of origin, brand equity and brand loyalty to the sports shoes market. Brand equity was proven to have a significant relationship with brand loyalty for all countries. The factors which can influence brand equity are different for different countries. The third finding of this paper is that we identified different three lifestyles, adventurer, follower, and laggard, for Korean, Chinese and American consumers. Without the nationality boundary, seeing the emergence of a new group of consumers who have similar preferences and buy similar brands is more important. All of the consumers consider brand equity to keep their brand loyalty. Perceived price is the only factor which can influence brand equity for adventurers; brand is more important for them. The laggards were not influenced by any factor. All of the factors expect perceived price are important for the followers. Marketing managers should consider brand equity when introducing their brand into a new market. Also localization is the basic strategy that all the sports shoes companies should understand. But as a global brand, understanding the same characteristics for each country is more important to build global strategy.

  • PDF