• Title/Summary/Keyword: Compactor

Search Result 51, Processing Time 0.024 seconds

A Study on Application of Warm-Mix Quiet Pavement Using Fine-Size Aggregate (소입경 골재를 이용한 중온 저소음 아스팔트 포장의 적용 연구)

  • Jo, Shinhaeng;Baek, Yujin;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • The study examines the quiet pavement using fine-size aggregates and warm-mix technique to reduce traffic noise. In order to evaluate the quality of pavement, mix design and laboratory tests were carried out. Test results showed that using 10mm aggregates can reduce the cantabro loss compared with 13mm aggregates due to increase contact area between aggregates. Mixing and compaction temperatures of warm mix quiet pavement should be determined by gyratory compactor test because it is used high viscosity asphalt binder. Using warm-mix additive could reduce compaction temperature by about $15^{\circ}C$. Noise measurement and permeability tests were conducted at the test road for evaluation of the field performance. All of quiet pavements meet the standard of permeability and have sufficient porosity. Noise reduction of the quiet pavement using fine-size aggregates is more effective than that using 13mm aggregates. In particular, the effect of noise reduction was noticeable at low speeds.

The Strength Properties of Permeable Hot Mix Asphalt for Surface Course (배수성 아스팔트 표층용 혼합물의 강도특성)

  • Lee, Kwan-Ho;Ham, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3296-3301
    • /
    • 2011
  • The Porous pavement gains popularity because of several benefits. It is to minimize hydro-planning condition, spraying condition, and splash to increase friction resistance, and decrease noise. Also, other studies showed that it is important to have appropriate porosity to reduce noise and water flush. The purpose of this study is an evaluation on the mechanical properties of asphalt pavements for surface course. In this study the specimen was manufactured using the Gyratory compactor in order to compact the strengthened surface course that involved the two-layer pavement. This study is conducted by using Marshall stability test(KS F 2377), Impact resonance test, Schmidt hammer test(KS F 2730), and the Uniaxial compression test(KS F 2314). Using the Uniaxial compression test and Schmidt hammer test, the values of compressive strength and bearing capacity were measured, and the modulus of elasticity for each specimen was respectively measured using the Uniaxial compression test, Impact Resonance test.

Characteristics of Rutting and Moisture Susceptibility of R-EPDM Modified Asphalt Mixtures (R-EPDM 개질아스팔트 혼합물의 소성변형 및 수분민감성 특성)

  • Jo, Young-Jin;Han, Joung-Min;Noh, Young-Jin;Choi, Se-Hyu
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.87-92
    • /
    • 2010
  • This study evaluates the laboratory properties of asphalt binder and mixture modified with R-EPDM(Recycling Ethylene Propylene Dien Monometer), which consists of R-EPDM as a main ingredient that is an industrial by-product made by manufacturing waste EPDM below 50 mesh as an additive. Superpave system was used to determine the PG(Performane Grade) and evaluate the property of R-EPDM modified binder. OACs(Optimum Asphalt Contents) of R-EPDM modified asphalt mixtures were determined by Superpave mix design using gyratory compactor and wheel tracking test and moisture susceptibility test were carried out with R-EPDM modified asphalt mixtures at OACs. The results from these tests, rutting-resistance and freezing and thawing resistance by moisture susceptibility of R-EPDM modified asphalt mixtures were superior to one of general asphalt mixtures(AP-5).

Compactability of various asphalt mixtures using warm mix additive (준고온 첨가제를 사용한 각종 아스팔트 혼합물의 다짐도 변화 연구)

  • Park, Tae-Soon
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.127-132
    • /
    • 2009
  • This study presents the test results on the compaction characteristics of warm mix asphalt mixtures that include the additive in 3 different mixtures(hot mix asphalt, SBS and SMA). The tests were conducted to find out the compaction characteristics on the compactability with varying compaction time, different amount of the warm mix additive and lowering the compaction temperature. The Superpave gyratory compactor was used to find out the variation of the density when the number of the gyration is varied. A dense mixture and 3 different warm mix additives were employed to find the relationship between compactability and compaction time. The comparison of the compactability with lowering the temperature was conducted using dense mixture, SBS polymer modified mixture and stone matrix asphalt mixture(SMA). The difference of the density of warm mix asphalt mixtures was not found due to the lowering of compaction temperature when it was compared with the standard mixture and the warm mix showed the stable condition in density. In the mean time, depending upon the different warm mix additive and mixture, the difference of density and the variation trend of compaction is found to be existed and shows the relationship between these two variables.

  • PDF

Comparison and Analysis on the Process of Master Curve Determination for Hot Mix Asphalt (아스팔트 혼합물의 마스터곡선 작성 방법의 비교 및 분석)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4199-4204
    • /
    • 2011
  • The dynamic modulus of hot mix asphalt is one of the important indicators to evaluate the durability and performance of asphalt pavement. In resent, the dynamic modulus is suggested by a key property of asphalt pavement design and analysis in AASHTO 2002 Design Guide and Korean Pavement Research Project(KPRP). Master curve from laboratory test results should be needed for pavement design and analysis. The process to get the master curve is standardized. But, there are some setup and testing error at low temperature(-$10^{\circ}C$) and high temperature ($55^{\circ}C$). In this paper, a simplified process which is used 3 testing temperatures (5, 21, 40) is adopted to get the master curve. Comparison was carried out for standard process and simplified process. The suggested process can be used to get the master curve of asphalt pavement, even though some difference was shown at high temperature.

Correlation Analysis between Rut Resistance and Deformation Strength for Superpave Mixtures (수퍼페이브 혼합물의 소신변형저항성과 변형강도와의 상관성분석)

  • Kim, K.W.;Kim, S.T.;Kwon, O.S.;Doh, Y.S.
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-53
    • /
    • 2004
  • This study dealt with correlation analysis between deformation strength and rut resistance of asphalt concretes based on binder grade in Superpave specification with changing submerging time. Currently, Mashall mix design is known to have little correlation with rutting related performance. Therefore, some agencies started to use the Superpave method for asphalt mix design. But this method has a weak point in that it can not distinct mechanical property of the asphalt mixtures designed. For solution of these problem, this study used deformation strength, $S_D$, of Kim test which is a new approach under development for finding property which represents rut resistance characteristics of asphalt mixtures under static loading. This study used two aggregates from two regions and five PG asphalt binders. Final rut depth (DR) and dynamic stability (DS) from wheel tracking (WT) test were obtained. and $S_D$ value of the same mixture specimen which was made by gyratory compactor was obtained using loading head [4(1.0)]. Three submerging times 30min, 40min, 50min were used as a test variable at $60^{\circ}C$. Correlation analysis of DR and DS with $S_D$ were performed based on PG grade. It was found out that the $S_D$ has a high correlation with DR and DS of superpave mixtures. The highest $R^2$ was found from the $S_D$ values of 30min. submerged specimen.

  • PDF

Assessment of Application of the Recycled Aggregate Crushed in-situ for Anti-freezing Layer and Lean Concrete Base Course (현장파쇄 순환골재의 동상방지층 및 빈배합 콘크리트층에 대한 적용성 평가)

  • Kim, Jin-Cheol;Kim, Hong-Sam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.98-107
    • /
    • 2005
  • In other to recycle the waste concrete produced in stiu on the construction and management in highway, the recycled aggregates were experimentally examined in a practical application for anti-freezing layer and lean concrete base course. From the results, the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-freezing layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the 7days compressive strengths of lean concrete were above the 10MPa regardless of the crushing types. From the result of testing the bearing capacity of anti-freezing layer, it was found that when the recycled aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2-20mm sieve increased by 5~13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. Although the compressive strength of lean concrete was 71~85% of the natural coarse aggregate, the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, 5.8MPa.

  • PDF

Evaluation of Dynamic Modulus based on Aged Asphalt Binder (아스팔트 바인더의 노화특성을 고려한 동탄성계수 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik;Song, Yong-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.51-58
    • /
    • 2008
  • Development of a new design guide which is based on empirical-mechanistic concept for pavement design is in action. It is called AASHTO 2002 Design Guide in USA and the KPRP(Korean Pavement Research Project) in Korea. The material characteristic of hot mix asphalt is a key role in the design guide. Therefore it is urgent to get a proper materials database, especially the dynamic modulus of hot mix asphalt. In this research, dynamic modulus test, which is based on aged asphalt binder, has been carried out and proposed the predicted equation of dynamic modulus. Nine different hot mix asphalt with three different asphalt binder have been used for the dynamic modulus test. Short-term aging, which is covers the time for the production of asphalt plant, transportation, lay-down, and compaction, can be simulated at $135^{\circ}C$ with 2 hour curing. Long-term aging has been carried out for a performance period of asphalt pavement. The dynamic modulus of asphalt pavement increases with aging time. As the nominal aggregate size increases, the change of dynamic modulus is not big.

Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation (열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum;Oh, Seung-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • Asphalt pavement accounts for more than 90% of the total pavement in Korea. Pavement is most widely constructed among construction structures. The heat transfer characteristics (Thermophysical Properties) of the asphalt pavement cause the heat island effect in downtown areas. An increasing asphalt surface temperature is one of the major causes of damage to asphalt pavement. This study examined the heat transfer characteristic factors according to solar energy accumulation in an asphalt mixture. The specimens (WC-2 & PA-13, Recycled aggregate used WC-2) used in the experiment were compacted with a Gyratory Compactor. The thermo-physical properties (thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity) and solar energy accumulation were evaluated. The thermal accumulation and HFM tests revealed a 1.2- to 2.0-fold difference. This indicates that the thermal conductivity of the asphalt mixture pavement changes with the accumulation of solar energy. An analysis of the correlation of thermal conductivity according to the surface temperature of the asphalt mixture showed that WC-2 was logarithmic, and PA-13 was linear. Experiments on the heat transfer characteristics of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Effect of Crumb Rubber on the Wear Tolerance of Korean Lawngrass (폐타이어 칩이 한국들잔디의 내답압성에 미치는 영향)

  • Lee, Chung-Hwan;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.19-33
    • /
    • 2003
  • The objective of this study was to evaluate the effects of crumb rubber recycled from used tires as a soil incorporation and topdressing materials on a trafficked Korean lawngrass‘Zenith’(Zoysia japonica). In Exp 1, incorporation treatments included three particle sizes (PS: coarse =4∼6.35 mm, medium =2∼4 mm, and One : less than 2 mm in diameter) and two incorporation rate (IR: 10 and 20%). Wear treatments were applied 30 passes per day by compactor weights being 60 kg with soccer shoes. Topdressing treatments included three PS and two topdressing depth (TD: 5 and 10 mm). Wear treatments were the same as described in Exp 1. In Exp 1, the treatment with medium PS+IR 20 resulted in the tendency to have high total clipping yield. There was no significant difference in clipping yield, turfgrass visual color, coverage, and root length among the treatments. Compared to control, tissue Zn levels increased about 6.5-fold by the treatments. The treatment with fine PS +IR 20 caused a less peak deceleration than coarse PS +IR 10. Total porosity, air-filled porosity, and capillary porosity increased with fine PS +IR 20. In Exp 2, compared to controls, however, there was a difference in turfgrass visual color after the termination of traffic treatment. There was no difference in root length. The treatment with fine PS + TD 10 resulted in the highest total clipping yield. As a result of soil physical analysis, soil penetration resistance was reduced by the treatments. The treatment with coarse PS resulted in a less peak deceleration than fine PS. In conclusion, turfgrass growth was increased by crumb rubber incorporation which enhanced soil physical properties. The crumb rubber topdressing was able to cushion the crown tissue area while still providing a smooth and uniform surface, improve overall turfgrass quality, and reduce compaction.