• 제목/요약/키워드: Compaction effect

검색결과 400건 처리시간 0.024초

실내실험을 통한 수중 매립토의 다짐효과 분석 (Experimental Study on Compaction Effect of Hydraulic Fill Soils)

  • 이행우;장병욱;장웅희;봉태호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.301-310
    • /
    • 2006
  • A series of laboratory tests was carried out for analyzing compaction characteristics of hydraulic fill soils(or hydraulically filled soils). Hydraulic fill soils were settled down by the weight of soil particle itself in water and consolidated by the extraction of water from the soil structures. Water content and dry unit weight were observed as the depth of sedimentation and consolidation soil. It was found from the result that the optimum water content $(W_{cpt})$ of the maximum unit weight$(\gamma_{dmax})$ is higher than that of laboratory compaction test(KS F 2312 A method). It was due to difference in compaction energy and compaction effect between two methods. And the maximum dry unit of hydraulic fill soil is smaller than that of laboratory compaction test. Especially in terms of compaction effect, the maximum relative compaction degrees$(R_{cmax})$ of Seamangum dredged sand, river sand and mixed sand, half and half of dredged and river sands, were 85%, 91% and 86%, respectively. It means that the compaction effect can be $85\sim91%$ of the maximum unit weight in laboratory compaction test.

  • PDF

A Study of the Compaction Effect of Expansive Admixture for the Development of an Expansive Compaction Packer

  • Kim, Jin-Chun;Park, Ki-Yeon;Lee, Dong-Ik;Lee, Gyu-Sang;Kim, Sang-Gyun;Yoo, Byung-Sun;Choi, Gi-Sung
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.179-188
    • /
    • 2015
  • Although permeating injection is ideal for grouting reservoir embankments, it is usually combined with fracturing injection for grouting, which can disturb the original soil. Compaction with low expansive pressure followed by grout injection can overcome this problem. An expansive compaction (EC) packer was developed in this work to easily apply sequential injection and compaction at a work site. Furthermore, to achieve compaction around the grouting hole, a mixture of expansive admixtures and grout was injected with the EC packer to trigger an increase in volume of the grout material. This work verifies the compaction effect of the EC packer and the expansive admixture. It reports the concepts of the EC packer, the range of expansive compaction, the effectiveness of injection, and the results of indoor tests performed to verify the effectiveness of the expansive admixtures. The indoor testing comprised a preparatory test and the main test. The preparatory test assessed the admixtures for their compaction effects, while the main test measured and analyzed the admixtures' expansive force, pressure, and compaction effect with a mold to verify the effectiveness of the compaction effect.

분열 프랙탈을 이용한 다짐 에너지의 영향 분석 - 입도, 다짐도 및 투수특성을 중심으로 - (Analysis of Effect of Compaction Energy on Characters of Grain Size Distribution, Compaction and Permeability Using Fragmentation Fractal)

  • 노수각;손영환;장병욱;김성필
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.59-67
    • /
    • 2006
  • Particles of soil are crushed when soil is compacted in the in-situ or lab. Among many factors that affect the crush of particles, compaction energy is a major factor. Because the crush of particles can change physical properties, the analysis of effect of compaction energy is very important. In this study, the fragmentation fractals were used for determining the change in grain size distribution and the effect due to change in grain size distribution was estimated. Compaction energy was increased by 50, 100, 200 and 300% based on the energy of standard A compaction test. As a result, grain size distribution curves were changed and fine particles increased as compaction energy were increased. Relative compaction were ranged between $93.38{\sim}107.67$. Fractal dimension of each site increased as compaction energy increased. Relative compaction is proportional to the fractal dimension but coefficients of permeability were in inverse proportional to the involution of fractal dimension.

흙의 다짐에너지가 다짐효과(效果)에 미치는 영향(影響)에 관(關)한 연구(硏究) (A Study on the Effect of Compaction Energy on Soil Compaction)

  • 김상목;강예묵
    • 농업과학연구
    • /
    • 제10권1호
    • /
    • pp.97-109
    • /
    • 1983
  • 흙의 다짐시험(試驗)에서 다짐층수(層數), 래머의 낙하회수(落下回數) 및 낙하고(落下高)를 변화(變化)시켜 다짐방법(方法)을 달리했을때 다짐효과(效果)에 미치는 영향(影響)을 조사하기 위하여 시험(試驗)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 다짐시험용(試驗用) 몰드의 치수가 작으면 시료(試料)의 최대경(最大徑)의 영향을 받는다. 2. 입도배합(粒度配合)이 양호(良好)한 흙일수록 다짐효과(效果)가 좋았으며 가장 좋은 다짐효과(效果)를 나타내는 No 200체 통과분의 최적함유량은 조립토함유량(粗粒土含有量)에 따라 다르나 대략(大略) 30~40%이었다. 3. 다짐에너지를 일정(一定)하게 고정했을때 다짐에너지를 가하는 방법(方法)이 다짐효과(效果)에 미치는 영향(影響)은 최대건조밀도(最大乾燥密度)의 차이가 A 시료(試料)에서는 1.3% B 시료(試料)에서는 3.1 % C 시료(試料)에서는 2.2%로 나타났다. 4. 다짐에너지를 증가시키면 다짐효과(效果)는 증대되나 다짐에너지가 어느 한계 (A시료(試料) : $5.96kg.cm/cm^3$)를 초과하면 그의 효과(效果)는 완만하게 나타났다. 5. 가장 이상적(理想的)인 다짐 효과(效果)를 나타내기 위한 다짐에너지의 증가방법(增加方法)은 흙의 토성(土性) 및 구성(構成), 입도분포(粒度分布)에 따라 다르며 A 시료(試料)에서는 낙하고, B시료(試料)는 다짐층수, C 시료(試料)는 낙하횟수를 증가시키는 것이 다짐효과(效果)가 좋았다.

  • PDF

흙의 다짐에 관한 실험적 연구 (Experimental studys about Compaction in Soil)

  • 이석찬
    • 한국농공학회지
    • /
    • 제14권2호
    • /
    • pp.2661-2667
    • /
    • 1972
  • In the construction of earth dam, embankment, highway by filling, a compaction is to increase the density of applying pressure. By compaction interspaces between the soil graivos decrease so that density and adhesion increase but void and permeability decrease. Good compaction results in higher stablilty. The effect of the compaetion depends on a number of factors, of which the most important are soil charactesistics. Water content, and external force. In this study discussed is about sandy loam that since, with indentical force exerted and indentical compaction method, the effect of the compaction will be different due to the soil characteristics, the change of optimum moisture content and of maximum dry density by compaction yields difference in Compaction for a same sample.

  • PDF

토목섬유가 보강된 고함수비 흙의 구속효과에 관한 연구 (A Study on the Confined Effects of Highly Moistured Soils Reinforced with Geosynthetics)

  • 유재원;임종철;강상균;이형준;최문봉
    • 한국지반신소재학회논문집
    • /
    • 제18권1호
    • /
    • pp.25-37
    • /
    • 2019
  • 본 연구에서는 고함수비 상태의 흙의 토목섬유 보강에 의한 다짐효과를 확인하고자 실내다짐실험, 현장다짐실험, 수치해석을 실시하였다. 토목섬유의 구속효과를 검증하기 위해 D다짐실험의 몰드(래머/몰드의 면적비=0.33) 보다 큰 몰드(래머/몰드의 면적비=0.19)를 이용하여 다짐을 실시한 결과, D다짐실험에서는 고함수비 구간의 건조밀도가 0.5~0.6% 증가하였지만, 큰 몰드를 이용한 다짐실험에서는 2.4~3.7%가 증가하는 것으로 분석되어 하중 작용면에 비해 측면지반의 면적이 충분히 넓을 경우, 함수비가 높은 구간에서도 토목섬유 보강에 의한 구속효과가 발생하였다. 현장다짐실험에서 '전압면으로부터의 심도(z/B)'에 따른 고함수비 구간 흙의 다짐효과를 분석한 결과, 무보강 시에는 과도전압으로 인해 다짐상태가 나빠져 다짐이 잘 되지 않았지만, 토목섬유를 보강할 경우 구속효과의 발생으로 다짐층에 다짐에너지가 효과적으로 전달되고 건조밀도가 증가함을 확인하였다. 또한, 토목섬유와 토사층의 거동에 대한 개념적 모델을 통하여 토목섬유의 보강으로 인한 지반내 매커니즘을 설명하였고, 이를 유한요소해석을 통해 검증하였다.

타이어공기압에 따른 트랙터의 견인성능과 토양다짐 (The Effect of Tire Inflation Pressure on Soil Compaction and Tractive Performance of Tractor)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.491-500
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of the tire inflation pressure of a tractor on soil compaction and tractive performance. Two kinds of field experiments were conducted using an agricultural tractor. One experiment is concerned with the tractive performance of the tractor at the three levels of tire inflation pressure; 50kpa, 100kpa and 200kpa, and the other one is about the soil compaction at the four levels of tire inflation pressure; 50kpa, 100kpa, 150kpa and 200kpa, at three different numbers of passes; 1, 3 and 5 passes. From the results of the field experiment, it was found that decreasing the tire inflation pressure decreased the motion resistance of tractor and increased the tractive force and tractive efficiency. The tractive and working performance of the tractor could be improved by the reduction of tire inflation pressure. Increasing the inflation pressure and the number of passes increased the soil compaction. Rate of compaction increased rapidly at the first pass and declined at subsequent passes. To reduce the effect of soil compaction for the whole field, it is recommended that tractor should follow the rut of the first pass from the subsequent passes, and decrease the inflation pressure of the driving tires up to allowable minimum level.

쇄석다짐말뚝 복합지반의 응력분담에 관한 현장실험 연구 (Field Test Study on Stress Concentration Ratio of Composited soft ground with Crushed-stone Compaction Pile)

  • 김태훈;이민희;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.717-724
    • /
    • 2003
  • Although sand compaction pile is applied considerably for increase of hearing capacity in domestic, it is getting more necessary to develope the alternative materials because of exhaustion and increase of unit cost of sand. In this study, stress concentration ratio between crushed-stone pile and soft ground was measured and, a displacement ratio 30, 40 and 50%, variation of stress concentration ratio was analyzed. As an increase displacement ratio, the stress concentration effect of crushed-stone compaction pile doesn't increase proportionally and effect of ground improvement in case of ground was good at displacement ratio 30% or 40%. The stress concentration ratio of crushed-stone compaction pile in group piles is 1.5 times that of crushed-stone compaction pile in single pile.

  • PDF

$Al_2O_3$분말과 SiC 휘스커 복합체의 치밀화에 미치는 상온 반복 압축의 영향 (Effect of Cold Cyclic Compaction on Densification of $Al_2O_3$ Powder/SiC Whisker Composite)

  • 최승완;김기태
    • 한국세라믹학회지
    • /
    • 제34권3호
    • /
    • pp.296-302
    • /
    • 1997
  • SiC휘스커를 첨가한 알루미나 분말 기지 복합체의 치밀화에 미치는 상온 반복 압축의 영향을 조사하였다. 반복 압축 응력과 반복 횟수가 증가할수록, 또한 바이어스 압력이 낮을수록 복합체의 초기 성형 밀도가 증가하였으며 가압 및 제하 속도, 반복 속도는 분말의 미끄러짐과 재배열에 큰 영향을 미치지 않음을 알 수 있었다. 상온 반복 압축으로 인한 SiC 휘스커의 파단은 거의 없었으며 휘스커의 배열 방향은 반복 압축 방향에 관계없이 고른 분포를 나타냄으로써 상온 반복 압축 성형이 SiC 휘스커를 첨가한 알루미나 분말 기지 복합체의 초기 성형 밀도를 높일 수 있는 효과적인 방법임을 알 수 있었다.

  • PDF

Delayed compaction effect on the strength and dynamic properties of clay treated with lime

  • Turkoz, Murat
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.471-480
    • /
    • 2019
  • The constructions of engineering structures such as airports, highways and railway on clayey soils may create many problems. The economic losses and damages caused by these soils have led researchers to do many studies using different chemical additives for the stabilization of them. Lime is a popular additive used to stabilize the clayey soils. When the base course is stabilized by mixing with an additive, inevitable delays may occur during compaction due to reasons like insufficient workers, breakdown of compaction equipment, etc. The main purpose of this study is to research the effect of compaction delay time (7 days) on the strength, compaction, and dynamic properties of a clay soil stabilized with lime content of 0, 3, 6, 9, 12 and 15% by dry weight of soil. Compaction characteristics of these mixes were determined immediately after mixing, and after 7 days from the end of mixing process. Within this context, unconfined compressive strength (UCS) under the various curing periods (uncured, 7 and 28 days) and dynamic triaxial tests were performed on the compacted specimens. The results of UCS and dynamic triaxial tests showed that delayed compaction on the strength of the lime-stabilized clay soil were significantly effective. Especially with the lime content of 9%, the increase in the shear modulus (G) and UCS of 28 days curing were more prominent after 7 days mellowing period. Because of the complex forms of hysteresis loops caused by the lime additive, the damping ratio (D) values differed from the trends presented in the literature and showed a scattered relationship.