• Title/Summary/Keyword: Compaction curve

Search Result 53, Processing Time 0.021 seconds

A Study on Embankment Compaction Control System Using RI Gauge(II) Focuses on the Modification due to Gravel Content (RI계기를 이용한 성토시공 관리기법연구(II) -조립토함유율에 따른 보정)

  • 나경준;정두영
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.97-108
    • /
    • 1994
  • A new RI calibration curve acquired from the laboratory tests on typical embankment materials is found to be adequate for testing subgrade materials in Korea but may not be suitable for testing materials containing gravels. Therefore this study aims for the modification of RI values that enables the usage of RI to all kinds of roadbed materials. Also other factors available for the criteria of compaction control such as air void ratio and degree of saturation were reviewed for their applicability.

  • PDF

A Study on the Interpolation Methods for the Laboratory Compaction Test Results (흙의 실내(室內)다짐시험결과(試驗結果)에 대한 해석적(解析的)인 산정(算定)에 관한 연구(研究))

  • Lee, Ho Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.169-175
    • /
    • 1992
  • The Maximum Dry Density (${\gamma}_{dmax}$) and the Optimum Moisture Content (${\omega}_{opt}$) of the soil samples are determined from the compaction curve plotted with the laboratory compaction test results. But in this study three reported tests, and tests on the silty clay and the sandy silt samples are reviewed through the interpolation methods using an equation of the Moisture-Density relations induced from Lagrange's Interpolation Formula without drawing the compaction curves. As the results of the study ${\gamma}_{dmax}$ and ${\omega}_{opt}$, were calculated rapidly and simply using the equation and approached to the results from the compaction curves, and also due to the differences of the ${\gamma}_{dmax}$ and ${\omega}_{opt}$, calculated from the equation between the compaction curves were within $0.01g/cm^3$(0.5%) and 0.4% respectively the method in this study be recommended as a simple method determining ${\gamma}_{dmax}$ and ${\omega}_{opt}$, during the laboratory compaction tests.

  • PDF

A Study on the Compaction and Permeability According to the Mixture Ratio of Pond Ash and Bentonite for Liner Material (매립지 차수재로써 매립회-벤토나이트 혼합비에 따른 다짐 및 투수특성에 관한 연구)

  • Lee, Jungsang;Lee, Jonghwi;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Recently, industrial by-products are exponentially growing because energy consumption is increasing due to rapid industrial development and improved living standards. The purpose of this study is to determine the proper mixing ratio to meet the liner conditions(must be less than $1{\times}10^{-7}$cm/sec), using pond ash and bentonite as liner. As the result of the compaction test, depending on the increase mixing ratio of bentonite, the maximum dry unit weight was decreased but the optimum moisture content was tended to be increased at the compaction curve. As the result of the permeability test, depending on the increase mixing ratio of bentonite, the coefficient of permeability showed tendency to be decreased in the form of index and the tendency was caused by the hydration reactions filling the void of the pond ash. When the mixing ratio of bentonite was approximately over 15%, it was satisfied with the land fill liner conditions. In other words, it is necessary to consider other mixtures containing the cement or another material in the economical aspect for application of the pond ash.

Permeability Effect of Decomposed Granite Soil under the Influence of Crushability and Compaction Energy (화강풍화토(花崗風化土)의 파쇄(破碎) 및 다짐에너지가 투수성(透水性)에 미치는 영향(影響))

  • Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 1983
  • This paper is concerned with the permeability through a decomposed granite soil layer which is influnced by change of grain sizes and crushed soils made by varied compaction energy. The change in the content of crushed soils can be described in terms of the ratio of surface area ($S_w{^{\prime}}/S_w $). The experiments were carried out to obtain the relationships of the coefficient of permeability(K) versus the optimum moisture content($w_{opt}$) by the variable head permeability test with the samples that were preapared by compaction test. The results are found as follows; (1) By the change in compaction energy, the crush ratio increased whereas the void ratio decreased with a larger maximum dry density running in parallel with the zero air void curve. (2) The ratio of surface area was $0.33(P)^{0.96}$ in $S_w{^{\prime}}/S_w $ with no relation to the compaction energy. (3) The grain size which produced the largest crush of soil particles ranged from 0.5 to 1 millimetre (4) The relationship of K versus $e^3$/1+e appeared as a straight line on the full-log-scale paper under the optimum moisture state. (5) As the compaction energy was larger, the passing percentage of #200-sieve grains increased linearly. The increment in the surface area ratio was deemed to have been caused by the decreased in the permeability.

  • PDF

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

Uplift Capacity of Spiral Bar through the Model Experiment (모형실험을 통한 스파이럴 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Kang, Dong Hyeon;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2015
  • This study compared and analyzed the measurements of pullout load according to the depth of reclamation in the foundation, compaction ratio of soil, spiral diameter, and soil textures in an experiment with a model and reached the following conclusions: The comparison results of extreme pullout load between farm and reclaimed soil show that farmland soil recorded a score that was 1.2~3 times higher than that of reclaimed soil. The investigator measured pullout load in farmland and reclaimed soil and observed a tendency of rising extreme pullout load according to the increasing depth of reclamation and compaction ratio with a similar load-displacement curve between the two types of soil. Extreme pullout load made a greater increase by the rising size of diameter than the increasing depth of reclamation, also making a considerably bigger increase according to the rising compaction ratio than the other conditions. Therefore, the spirals bar is expected to be available in soft soil foundation, as well as farmland as increasing buried deep of foundations, compaction rate, diameter of the spiral, ect.

Prediction of Maximum Dry Unit Weight of Sandy Soils From Grain-Size Distribution Parameters (입도분포계수를 이용한 사질토의 최대건조단위중량 예측)

  • Song, Young-Woo;Jin, Myung-Sub;Hong, Ki-Nam
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.55-64
    • /
    • 2004
  • Maximum dry unit weight, ${\gamma}_{dmax}$, is the most important engineering properties for subgrade soil. Existing models to predict ${\gamma}_{dmax}$ containing many parameters, seem to be rather complex. This paper presents new simple models to predict ${\gamma}_{dmax}$. for sandy soils, A number of sieve analysis and compaction tests for 36 types of sands were conducted to develop the regression-based models. Parameters used to estimate ${\gamma}_{dmax}$ are both the geometric mean and geometric standard deviation of the soils, or the particle-size distribution curve parameters. Maximum dry unit weights predicted by the models are in good agreement with the laboratory measurements for the soil samples obtained at 16 locations within the Korea.

  • PDF

Unified Molding and Simulation for Nano-structured Tungsten Carbide

  • Park, Seong-Jin;Johnson, John L.;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.362-363
    • /
    • 2006
  • Nano-structured tungsten carbide compacts with cobalt matrices (WC-Co) offer new opportunities for achieving superior hardness and toughness combinations. A unified modeling and simulation tool has been developed to produce maps of sintering pathways from nanocrystalline WC powder to sintered nano-structured WC-Co compacts. This tool includes (1) die compaction, (2) grain growth, (3) densification, (4) sensitivity analysis, and (5) optimization. All material parameters were obtained by curve fitting based on results with two WC-Co powders. Critical processing parameters are determined based on sensitivity analysis and are optimized to minimize grain size with high density.

  • PDF

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF

Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism (하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성)

  • Oh, Se Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.51-61
    • /
    • 2001
  • A series of model tests and analyses by load transfer function were performed to study load-settlement behaviour with relative compaction ratio of soil and embeded depth of pile. In the model tests, embeded depth ratio(L/D) of pile were installed 15, 20, 25 and relative compaction of soil(RC) is 85%, 95% and then cement were injected at around perimeter of pile. For analysis of embedded pile, the paper were compared results of model tests with analysis results by Vijayvergiya model and Castelli model, Gwizdala model of elastic plasticity-perfect plastic model and then the fitness load transfer mechanism was proposed to predict load-settlement behaviour of embeded pile. The analysis results of predicted bearing capacity by load transfer function, ultimate bearing capacity of embeded pile were approached to measured value and behaviour of initial load-settlement curve were estimated that load transfer function by Castelli were similar to measured value. The result of axial load analysis of bored pile shows that skin friction estimated by load transfer mechanism is investigated more a little than that of measured values.

  • PDF