• 제목/요약/키워드: Compaction Density

검색결과 421건 처리시간 0.025초

Prevention of Crack Formation by Changing Tool Shapes in Powder Compaction Process

  • Pang, Y.C.;Lee, H.C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.30-31
    • /
    • 2006
  • In a multi-action tooling system, which is usually used for the powder compaction process to fabricate the complex multilevel parts, crack formation is crucially detrimental and should be avoided. Among various process factors, tool shape is an important factor to prevent the crack formation during powder compaction process. In this work, the effects of different tool shapes were investigated through the experimental oberservation of pore distribution in real products and the finite element analysis of residual stresses. The results were interpreted based on non-uniform powder density in the compacted parts.

  • PDF

Numerical modeling of rapid impact compaction in loose sands

  • Ghanbari, Elham;Hamidi, Amir
    • Geomechanics and Engineering
    • /
    • 제6권5호
    • /
    • pp.487-502
    • /
    • 2014
  • A three dimensional finite element model was used to simulate rapid impact compaction (RIC) in loose granular soils using ABAQUS software for one impact point. The behavior of soil under impact loading was expressed using a cap-plasticity model. Numerical modeling was done for a site in Assalouyeh petrochemical complex in southern Iran to verify the results. In-situ settlements per blow were compared to those in the numerical model. Measurements of improvement by depth were obtained from the in-situ standard penetration, plate loading, and large density tests and were compared with the numerical model results. Contours of the equal relative density clearly showed the efficiency of RIC laterally and at depth. Plastic volumetric strains below the anvil and the effect of RIC set indicated that a set of 10 mm can be considered to be a threshold value for soil improvement using this method. The results showed that RIC strongly improved the soil up to 2 m in depth and commonly influenced the soil up to depths of 4 m.

다짐 화강풍화토의 균등계수 변화에 따른 함수특성곡선에 관한 연구 (A Study on the Soil Water Characteristic Curve with Change of Coefficient of Uniform in Compacted Granitic Soils)

  • 유건선;김덕경;유남재
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.145-153
    • /
    • 2009
  • In this study, to determine characteristics of compaction and the soil water characteristic curve(SWCC) in decomposed granitic soils, compaction tests and SWCC tests were carried out for samples having various contents of coefficient of uniform($c_u$), By compacting their samples with standard Proctor density test, the effects of binder contents on maximum dry density and optimum moisture content were investigated and compared. Samples compacted with the maximum dry density and the optimum moisture content were tested by means of the SWCC, to determine their SWCC parameters, such as Brooks & Corey(${\lambda}$, ${\Psi}_b$), Van Genuchten (${\alpha}$, n, m), Fredlund & Xing(a, n, m).

  • PDF

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.

우리나라 상토의 물리적 표준분석법 설정 연구 1. 입자밀도 및 용적밀도 (Development of Standard Analysis Methods for Physical Properties on Korean bedsoil 1. Particle density and Bulk density)

  • 김이열;조희기
    • 한국토양비료학회지
    • /
    • 제35권6호
    • /
    • pp.327-334
    • /
    • 2002
  • 우리나라 유통상토에 대한 물리적 표준분석법을 설정하기 위한 연구를 실시하였다. 국내 시중에 유통되고 있는 53개 품목의 원예용 상토와 9개 품목의 수도용 상토를 대상으로 설정된 분석법을 적용하여 실험하였다. 입자밀도의 측정은 가스형 피크노메타 (Micromeritics Co. Model 1305)를 사용하면 속도와 정확성 면에서 매우 유리 하였다. 용적밀도는 구미에서 Sandbox법에 의한 용적밀도를 기본으로 하기 때문에 이와 유사한 성적을 얻을 수 있는 다양한 실험을 한 결과, 추다짐법 (Plunger compaction method)이 가장 유의성 있는 측정 방법으로 밝혀졌다. 한편 가스형 피크노메타법에 의한 우리나라 유통상토의 입자밀도는 원예용이 1.93, 수도용이 $2.43Mg\;m^{-3}$로 나타났으며, 추다짐법에 의한 용적밀도는 원예용이 0.22, 수도용이 $1.01Mg\;m^{-3}$로 각각 나타났다.

초고압 성형을 통한 Mo 나노 분말의 치밀화 (Densification of Mo Nanopowders by Ultra High Pressure Compaction)

  • 안치형;최원준;박천웅;이승영;김영도
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

Compaction and Sintering Behavior of $Al_2O_3$-modified Ziroconium Titanate $(ZrTiO_4)$

  • Chun, Myoung-Pyo;Geun, Hur;Myoung, Seung-Jae;Cho, Jung-Ho;Kim, Byung-Ik
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.822-823
    • /
    • 2006
  • The compaction and sintering behavior of zirconium titanate $(ZrTiO_4)$ was investigated by means of the measurement of sintering density and shrinkage, and the observation of microstructure. With increasing the content of $Al_2O_3$ additive, $Al_2O_3$-modified zirconium titanate samples fired at $1300^{\circ}C$ showed the anisotropic shrinkage behavior that the upper region of sintered body has higher sintering shrinkage than the low region. This difference of sintering shrinkage decreased with increasing firing temperature from 1300 to $1400^{\circ}C$. The SEM micrographs of powder compation show that the anisotropic shrinkage behavior is related with non-uniform density in a uniaxial compaction.

  • PDF

상압소결 ZTA의 분말 성형 공정 최적화 (Optimization of powder compaction parameters for the pressureless sintered ZTA)

  • 신동우;김경도;박삼식;임창성;이수완
    • 한국결정성장학회지
    • /
    • 제8권2호
    • /
    • pp.356-364
    • /
    • 1998
  • $ZTA:\;Al_2O_3/\;15\;vol{%}\;ZrO_2$ (Zirconia Toughened Alumina : ZTA)를 상압소결에 의해 제조시 분무건조한 granule의 특성에 따른 성형밀도 및 소결밀도의 변화를 고찰하여, 소결밀도의 재현성을 향상시킬 수 있는 성령 공정 조건을 제시하였다. 결합제의 첨가 유무에 따라 granule의 구형도, 평균크기, granule 내의 hollow의 생성정도, 수분함유량 등이 다름을 확인하였다. granule의 물성 차이가 성형거동에 미치는 영향을 성형압(80~120MPa)과 성형방법(일축성형과 정수압 성형)에 따른 성형밀도의 변화를 통하여 조사하였다. granule의 특성 변화에 의한 밀도의 낮은 재현성은 성형압과 성형방법의 최적화를 통하여 극복될 수 있음을 확인하였다. 즉 가능한 낮은 압력(80MPa)에서 일축성형한 후 고압(500MPa)에서 정수압 성형하였을 때 소결후 밀도변화는 1%이내에서 조절되었다.

  • PDF

알루미나 압축성형체의 성형밀도와 유한요소 시뮬레이션 결과의 비교 (Comparison of the Finite Element Analysis and Experimental Result for Green Body Density of Alumina Ceramics)

  • 육영진;임종인
    • 한국세라믹학회지
    • /
    • 제44권4호
    • /
    • pp.235-239
    • /
    • 2007
  • For the pressure compaction process of the ceramic powder, the density distribution is very important for the uniform shrinkages at the sintered body. In this paper, we fabricated alumina green body using compaction process and simulated about same condition. Then comparison of simulation and experimental result confirmed that accuracy of simulation. On the average density of top and lower part was each $2.41g/cm^3,\;2.27g/cm^3$ and deviation at final step was calculated with 0.06 in simulation. Also, experiments show that total density of top and lower part was each $2.59g/cm^3,\;2.36g/cm^3$, and deviation was 0.09. Conclusion, that was not a difference to the simulation and experimental result. The application using the finite element simulation method is possible optimization of the compressing process, predict generated part of cracks and there is a possibility of getting result of more fast, more accurate then existing experience method.