• Title/Summary/Keyword: Compacted soil

Search Result 242, Processing Time 0.026 seconds

The Friction Coefficients of Interfaces between Weathered Granite Soil and Reinforcements (화강토와 보강재 경계면에서의 마찰계수에 관한 연구)

  • 김상규;이은수
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 1996
  • A series of shear tests is performed to measure friction coefficients of the interface between different reinforcements and weathered granite soils. The reinforcements tested are smooth steel strip, Paraweb(friction tie) and geotextile with rough surface, while the weathered granite soils are composed of different, grain size distribution. Soils are compacted with the energy of 95% modified AASHTO and fully saturated before testing to simulate the worst site condition. Because of characteristics of the direct shear apparatus, shear strength is obtained in terms of drained condition. Test results show that the more fines the soils contain, the larger ratio of friction coefficient ($\mu=\frac{tan{\delta}}{tan{\Psi}}$) is obtained. Also the ratios are much higher for the Friction tie and the geotextile compared to the smooth steel strip. Those suggest that even weathered granite soils with 36% fines are possible to use as backfill of reinforced earth structures for the two reinforcements when a drainage system is provided.

  • PDF

Physical Characteristics of Ridge Traversing Trail in Mount Jiri National Park (지리산 국립공원 종주 등산로의 물리적 특성)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.4
    • /
    • pp.425-441
    • /
    • 2011
  • Ridge traversing trail in Mount Jiri National Park is classified as flat, gully-like, unilateral, and asymmetric bilateral, paths based on a location and gradient of paths. These types are interchangeable due to a drainage condition of trail surfaces. Using a rapid survey, the trail is 135.9 cm wide, 23.6 cm deep and $5.1^{\circ}$ in a gradient, respectively. All treads have been compacted due to human trampling. The path width is affected by a slope aspect and a distribution of Sasa borealis. An asymmetric path is wider than a symmetric path. A soil erosion rate is equivalent to $68.9cm^2/year$ for the period from 1960 to 2009, suggesting that the trail has been widened 2.7 cm/year and the tread lowered 0.4 cm/year. Trampling and needle ice action combined with rainwash induced by a pipeflow are dominant erosion processes contributing to the trail expansion.

Vegetation Influences on the Slope Stabilization (식생(植生)이 비탈면의 안정(安定)에 미치는 영향)

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.35 no.1
    • /
    • pp.47-55
    • /
    • 1977
  • As the development of national lands increase, the necessity to develop less favorable terrain also increases. It also becomes more difficult and complicated to provide access that is both economical and safe from contributing to soil erosion on roadsides and to londscape damages. Because of the increased and justified emphasis upon environmental degradation, proper stabilization of the cut-and bank slopes of roadsides, plant sites and building sites in Korea requires careful planning as well as execution of the constructions. All fill slopes should be compacted to a degree consistent with design standards and material properties. Drainage facilities should be provided to prevent damaging concentrations of surface runoff and to avoid high pore pressures in cuts and fills. All surfaces of cut-fill slopes should be revegetated with suitable species as soon as possible after construction. To stabilize the cut-fill slopes of highway roadsides should be considerded the factor of stabilization as well as landscape conservation especially. Such basic influences as the effects of vegetations on water balance of rain fall, on the control of surface erosion and on the surface slope failures are briefly discussed in the report.

  • PDF

절수의 시기 및 방법의 차이가 수도의 생육수량과 기타 실용형질에 미치는 영향

  • 이창구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.1 no.1
    • /
    • pp.18-25
    • /
    • 1968
  • Higher yield in rice paddies is greatly dependent on adequately balanced and timely supply of water. A majority of rice paddy in Korea is generally irrigated by rainfall, but in many cases it has to be supplemented by artificial irrigation for optimum rice culture. Although the water requirement of rice plant is for higher Than that of athec crops, submerged condition of rice paddy is not Necessarily required. The moisture requirement of rice plant varies with its growing stages, and it is possible to increase the irrigation efficiency through reduction of water loss due to percolation in rice paddies. An experimental plots were set up by means of sandomized block design with three duplication; (a) All time submerged, (b) Economically controlled, and (c) Extremely controlled. Three different irrigation periods Were (a) Initial sage, (b) Inter-stage, and (c) Yast stage. The topsoil of the three plots were excavated to the depth of 30 cm and then compacted with clay of 6 cm thickness. There after, they were piled up with the excavated top soils, leveled and cored with clay of 6 cm thickness around footpath in order to prevent leakage. The results obtained from the experiments are as follows, 1. There is no difference among the three experiments plots in terms of physical and chemical conditions, soil properties, and other characteristics. 2. Culm length and ear length are not affected by different irrigation methods. 3. There is no difference in the mature rate and 1, 000 grain weight of rice for the three plots. 4. The control plot which was irrigated every three days shows an increased yield over the all the time submerged plot by 17.8 percent. 5. The clay lined plot whose water holding capacity was held 5 days long, needs only to be irrigated every 7 days. 6. The clay lined plot shows an increased yield over the untreated plot ; over all-the-time submerged plot by 18 percent ; extremely controlled plot by 18 percent, and economically controlled plot by 33 percent. 7. It may be saved in water requirement about one Thirds.

  • PDF

Plant Regeneration from Zygotic Embryo-Derived Callus in Citrus junos SIEB. (유자(Citrus junos SIEB.)의 접합배로부터 캘러스 유도 및 식물체 재분화)

  • 박민희;정휘현;이숙영;김홍섭
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.4
    • /
    • pp.189-194
    • /
    • 1995
  • Calli were successfully induced from immature embryos of Citrus junos SIEB. cultured on 1/2 MS medium supplemented with 40.4 BA. Plant were regenerated from immature embryo derived callus on MS medium with 5 $\mu$M BA. The calli were morphologically characterized by two types: one was whitish and the other was yellowish. After 16 weeks of culture, shoots and root were formed on calli. Plantlets were transplanted to soil and successfully grown to a whole plant Also, the arrangement of the cells showed many differences according to developmental stages of callus and organogenesis. The small cells were compact in callus cultured for 6 weeks and the extended cells which divided actively appeared in it after 8 weeks of culture. The globular protrusion of compacted cells occurred in callus after 10 weeks of culture, and the neighboring cells were liquefied. Oil sac surrounded by the liquefied cell was observed in the leaf and was formed by rupture of liquefied cells.

  • PDF

Evaluation of Ground Compaction Using SASW Testing (SASW 시험을 활용한 지반 현장 다짐도 평가)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Compaction is performed in civil engineering sites to secure the stability of the ground and prevent settlement. While the process of compaction is crucial, it is also essential to evaluate the degree of compaction after the completion of the process. In domestic sites, the evaluation of compaction is mainly conducted on a small number of spot using point-based tests such as plate load tests and sand cone tests. The methods presented so far allow assessment of surface compaction, but evaluating compaction in deeper layers poses challenges. Moreover, due to the limited coverage of point-based testing, it is difficult to achieve an overall assessment of compaction. As a solution to these issues, the Spectral-Analysis-of-Surface-Waves (SASW) tests were utilized to evaluate compaction. SASW tests offer a broader measurement range compared to point-based tests, and depending on the test setup, this method can provide the stiffness of the ground at greater depths. In this study, SASW tests were conducted in a compacted soil site under different conditions to assess compaction. Additionally, Nuclear Density Gauge tests were conducted concurrently to compare and verify the results of SASW. The research results confirmed the feasibility of evaluating compaction using SASW at the geotechnical site.

Effect of Gravel Size on Shear Behavior of Sand with Dispersed Gravels (모래 지반 내에 포함된 자갈의 크기가 전단거동에 미치는 영향)

  • Park, Sung-Sik;Kim, Young-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.39-51
    • /
    • 2011
  • A large number of small particles may surround large gravels which are non-contact and dispersed within the ground. The strength of such soil may be influenced by the mechanical properties of a few coarse gravels. A specimen or gravel size can impact the shear characteristics of sand with dispersed gravels. In this study, the size of gravel and specimen varies and its effect on shear characteristics of a granular soil was evaluated. Five sizes of gravels with 7, 12, 15, 18, and 22 mm were used repeatedly and inserted in the middle of each compacted layer. A specimen consists of five or ten equal layers depending on gravel size, which is 5 cm or 10 cm in diameter and 10 cm or 20 cm in height. An embedded gravel ratio by weight is 3% and constant for all cases with gravel. After consolidation, a series of undrained triaxial compression tests under three confining pressures was performed on sand with dispersed gravels. The maximum deviator stress of a specimen with 10 cm in diameter was at average 30% higher than that with 5 cm in diameter and increased up to 90% for a specimen with gravel. When a gravel size of 7 and 12 mm used, the maximum deviator stress of a specimen with 10 cm in diameter was higher than that of one without gravel, whereas the maximum deviator stress of a specimen with 5 cm was higher or lower than that without gravel. The gravel size and specimen diameter influenced the undrained behavior of sand. The maximum deviator stress of a specimen with gravel either increased or decreased compared to that without gravel, depending on the ratio of gravel size to specimen diameter, 1/5.

Evaluations on the Compaction Energy Effects on the Soil Compaction at Sub-Zero Temperature (영하에서의 다짐에너지에 따른 다짐 효과 평가)

  • Lee, Jeonghyeop;Hwang, Bumsik;Chae, Deokho;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.13-20
    • /
    • 2015
  • Due to the population growth and exhaustion of resource, the development on the harsh environment such as cold weather is emerging as an alternative for new resource development. The permafrost area covers about 14 percent of the world's land area and the global construction market for such area is rapidly expanded. Whereas the developed countries have already recognition of the need for research of coldest place and invested heavily in technology development, the domestic technology for the coldest place development is less developed and related research has rarely been performed. There is not a detailed national specification standard for the strength and deformation properties of the earthworks at sub-zero temperature but simple field directions. Therefore, the D compaction tests were conducted on the sand with fine contents of 0%, 5%, 10% and 15% at room temperature ($18^{\circ}C$), $-3^{\circ}C$ and $-8^{\circ}C$ to investigate the effect of the compaction energy on the compacted soils at sub-zero temperatures. Based on the test results, the larger compaction energy, the larger maximum dry unit weight under sub-zero temperature and D type compaction at $-3^{\circ}C$ show similar max. dry unit weights as those obtained from the compaction at the room temperature. However, compaction at $-8^{\circ}C$ showed significant performance degradation regardless of the compaction energy.

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Characteristic of Subgrade Soil using Gyratory Compactor (선회다짐기를 이용한 노상토의 다짐특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.571-577
    • /
    • 2018
  • A gyratory compactor was developed to reflect the field compaction roller, which is commonly used in road construction. Unlike the compaction of the proctor using a conventional impact load, the gyratory compactor simulated the field roller compaction characteristics using the compressive force by the roller weight and the shear force through the rotation of a roller. The purpose of this study was to evaluate the shear stress and density change characteristics during compaction, which are difficult to obtain in the existing compaction process of the proctor, and to utilize it as a basic data for road design. The compaction characteristics of sand and subgrade soils were also analyzed and evaluated using the gyratory compactor. The compaction characteristics obtained using the gyratory compaction are basically the number of gyrations, height of the specimen, compaction density, void ratio, degree of saturation, and shear stress. As the number of gyrations increased, the height of the specimen decreased, the compaction density increased, the void ratio decreased, the degree of saturation increased, and the shear stress tended to increase. The shear stress of the compacted specimens started at 200 kPa in the initial stage of compaction and increased to approximately 330 to 350 kPa at 50 gyrations. The compaction density, degree of saturation and shear stress tended to increase with increasing water content in the same specimens. Compaction using turning compaction has the advantage of measuring the physical properties required for road design, such as density and shear stress, so that more engineering road design will be possible if it is reflected in road design.