• Title/Summary/Keyword: Compact Size Package

Search Result 17, Processing Time 0.027 seconds

An Wideband GaN Low Noise Amplifier in a 3×3 mm2 Quad Flat Non-leaded Package

  • Park, Hyun-Woo;Ham, Sun-Jun;Lai, Ngoc-Duy-Hien;Kim, Nam-Yoon;Kim, Chang-Woo;Yoon, Sang-Woong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.301-306
    • /
    • 2015
  • An ultra-compact and wideband low noise amplifier (LNA) in a quad flat non-leaded (QFN) package is presented. The LNA monolithic microwave integrated circuit (MMIC) is implemented in a $0.25{\mu}m$ GaN IC technology on a Silicon Carbide (SiC) substrate provided by Triquint. A source degeneration inductor and a gate inductor are used to obtain the noise and input matching simultaneously. The resistive feedback and inductor peaking techniques are employed to achieve a wideband characteristic. The LNA chip is mounted in the $3{\times}3-mm^2$ QFN package and measured. The supply voltages for the first and second stages are 14 V and 7 V, respectively, and the total current is 70 mA. The highest gain is 13.5 dB around the mid-band, and -3 dB frequencies are observed at 0.7 and 12 GHz. Input and output return losses ($S_{11}$ and $S_{22}$) of less than -10 dB measure from 1 to 12 GHz; there is an absolute bandwidth of 11 GHz and a fractional bandwidth of 169%. Across the bandwidth, the noise figures (NFs) are between 3 and 5 dB, while the output-referred third-order intercept points (OIP3s) are between 26 and 28 dBm. The overall chip size with all bonding pads is $1.1{\times}0.9mm^2$. To the best of our knowledge, this LNA shows the best figure-of-merit (FoM) compared with other published GaN LNAs with the same gate length.

First Light Results of IGRINS Instrument Control Software

  • Lee, Hye-In;Pak, Soojong;Sim, Chae Kyung;Le, Huynh Anh N.;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2014
  • IGRINS (Immersion GRating Infrared Spectrograph) is a high spectral resolution near-infrared spectrograph that has been developed in a collaboration between the Korea Astronomy & Space Science Institute and the University of Texas at Austin. By using a silicon immersion echelle grating, the size of the fore optics is reduced by a factor of three times and we can make a more compact instrument. One exposure covers the whole of the H- and K-band spectrum with R=40,000. While the operation of and data reduction for this instrument is relatively simple compared to other grating spectrographs, we still need to operate three infrared arrays, cryostat sensors, calibration lamp units, and the telescope during astronomical observations. The IGRINS Instrument Control Software consists of a Housekeeping Package (HKP), Slit Camera Package (SCP), Data Taking Package (DTP), and Quick Look Package (QLP). The SCP will do auto guiding using a center finding algorithm. The DTP will take the echellogram images of the H and K bands, and the QLP will confirm fast processing of data. We will have a commissioning observations in 2014 March. In this poster, we present the performance of the software during the test observations.

  • PDF

Low-Cost Hologram Module for Optical Pickup by Adjusting Photodiode Package (포토 다이오드 조정방식을 이용한 광 픽업용 저가 홀로그램 모듈)

  • Jeong, Ho-Seop;Kyong, Chon-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • We proposed a new and cost-effective method fer assembling holographic pickup modules without any high resolution vision system. Assembling was accomplished by adjusting photodiode package only, leading to a low cost, holographic pickup module. Focus and tracking error signals were simply determined by comparing spot sizes and by using the 3 beam method, respectively, based on four-sectional holographic optical elements. In experiment, we assembled a hologram module and estimated performance of the proposed method fur a holographic pickup module used in compact disc system.

Development Can Air Leak Detector System For Single Compression Head-Line Type Using Pressure Sensor (압력 센서를 이용한 씽글 헤드라인 타입의 캔 에어 리크 검출씨스템 개발)

  • Lee, Jong-Woon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.506-507
    • /
    • 1992
  • When it comes to the 'Leak Detector System' generally, our country has a large income 'Rotary Type Leak Detector' of foreign goods. The completed development of the 'Line Type Leak-Detector' system was produced to check Whether the containers for small and large on the filling line are auto defective. This system is applied to the filling package Processing during the production and contributed to inproving competiveness of domestic containers manufactures of all society of Industry. Also, high precision and realiablity, very compact size, low cost and Easy set-up etc. by checking the experimental data directly plan, Design and making for '1 Compression Head Control Leak Detector System'. This flexcible system can be equipped with multiple Compression heads depending on the requested prodution test rate and test precision.

  • PDF

Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis

  • Choi, Gi-Won;Moon, In-Hyuk;Sung, So-Young;Lee, Mynug-Joon;Chu, Jun-Uk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1268-1271
    • /
    • 2005
  • This paper proposes a compact-sized surface myoelectric sensor for myoelectric hand prosthesis. To fit the surface myoelectric sensor in the socket of the myoelectric hand prosthesis, the sensor should be a compact size. The surface myoelectric sensor is composed of a skin interface and a single processing circuit that are mounted on a single package. Since the skin interface has one reference and two input electrodes, and the reference electrode is located in middle of two input electrodes, we propose two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material used for the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering conduction velocity and median frequency of the myoelectric signal, we select the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22 mm. The signal processing circuit consists of a differential amplifier with band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value circuit. We evaluate the proposed sensor from the output characteristics according to the IED and the shape of the reference electrode. From the experimental results we show the surface myoelectric sensor with the 18mm IED and the bar-shaped reference electrode is suitable for the myoelectric hand prosthesis.

  • PDF

Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis (근전의수용 소형 표면 근전위 센서의 개발)

  • Choi, Gi-Won;Sung, So-Young;Moon, Inhyuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.67-76
    • /
    • 2005
  • This paper proposes a compact-sized surface myoelectric sensor for the myoelectric hand prosthesis. To fit the surface myoelectric sensor in the socket for the myoelectric hand prosthesis, the sensor should be a compact size. The surface myoelectric sensor is. composed of a skin interface and a single processing circuit that are mounted on a single package. The skin interface has one reference and two input electrodes, and the reference electrode is located in the center of two input electrodes. In this paper we propose two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material of the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering the conduction velocity and the median frequency of the myoelectric signal, we select the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22 mm. The signal processing circuit consists of a differential amplifier with a band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value circuit. We evaluate the proposed sensor from the output characteristics according to the IED and the shape of the reference electrode. From the experimental results we show the surface myoelectric sensor with the 18mm IED and the bar-shaped reference electrode is suitable for the myoelectric hand prosthesis.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.