• Title/Summary/Keyword: Compact Boiler

Search Result 12, Processing Time 0.028 seconds

Design Evaluation of Heavy Duty Heat Exchangers for Compact Steam Boilers (밀집형 증기보일러의 고부하 열교환기 설계평가)

  • Kim, Sungil;Yang, Jongin;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.23-31
    • /
    • 2013
  • Compact steam boiler is a useful heat exchanger in a space-intensive system. There are some constraints in terms of sizing and designing the space confined in the system which is usually used in vessels. In this study, design considerations for heavy duty heat exchangers of compact steam boilers are presented and evaluated. Especially, evaporator tubes of marine boiler which are exposed to a high temperature environment are considered. Also, extended surface designs with a high temperature are examined. In order to determine the criteria with considerations of both heat transfer rate and pressure drop in the heat exchanger, they are evaluated with major variables, such as the tube diameter, the number of tubes, and the tube length. Finally, the design parameters are estimated as the bare tubes are installed instead of the finned tubes.

A Study on the Combustion Characteristics of Flat-Plate Premixed Burner for Various Flame Surface Media and Heat Exchangers (평판형 예혼합 버너의 다양한 화염면 매질 및 열교환기에 따른 연소 특성)

  • Cho, Eun-Seong;Park, Chang-Kwon;Choi, Kyung-Suhk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1033-1040
    • /
    • 2011
  • The premixed burner is a very strong candidate for using household boiler burner system because it has high efficiency, low emission and can be used in compact boiler system. Usually, household boiler burner systems use a Bunsen burner, which consists of an inner rich premixed flame and fuel burned completely by a secondary air supply. It has a relatively long flame length and operates in a high excess of air, so it is difficult to fit such a burner into a high efficiency compact boiler. In this paper, the characteristics of a premixed combustion burner for surface media such as metal fiber, ceramic, and SUS fin were evaluated. In particular, the flow velocity over the burner surface for the cold flow characteristics of the surface material were measured and adjusted. The combustion tests were carried out by taking pictures of the flame and measuring the flame temperature. The amounts of CO and NO were measured and the characteristics of the surface burner materials, combustion chamber, and heat exchangers were evaluated for various excess air ratios and heating values.

Numerical & Experimental Study For Burner of Low NOx Formation of Multi-Stage In a Combustor (연소기에서의 다단 저 NOx 버너의 수치 및 실험적 연구)

  • Choi, Yun-Ki;Kang, Kyung-Tae;Kim, Young-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.65-74
    • /
    • 2003
  • Air pollution included Nitric Oxide(NOx) from heating boilers is increased by pursuing better life. Development of low NOx emission boiler is strongly needed. However commercial burner for heating boiler is also asked to be thermal efficient and low-cost manufactuable in addition to low NOx emission. Small space for combustor including burner is usually allowed. In this study, parametric study of compact low NOx burner for heating boiler was done using numerical analysis and experiments. Commerical computational fluid dynamic(CFD) program named CFX 5-6 was used for numerical analysis of low NOx burner using turbulent diffusion flame. Comparison of outlet NO and outlet temperature under various equivalence ratio and fuel flow rate was performed between experiment and numerical analysis.

  • PDF

Heat Transfer in the Combustion Chamber for the Compact Hot-Water Boiler (콤팩트 온수 보일러 연소실의 열전달 특성)

  • Cho, Jung-Hwan;Seo, Tae-Beom;Kim, Wook-Jung;Kim, Chang-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.459-464
    • /
    • 2001
  • A mathematical model has been developed to describe the turbulent and reversed flow with convective heat transfer in a cylindrical combustion chamber. By using the mathematical model for high temperature flow enables the trends in overall heat transfer rates to be predicted. The model was applied to the design of the combustion chamber. The influences of the size of air inlet and inlet velocity were investigated for process optimization. Through modelling work it is found that the heat transfer rate to the chamber wall may be enhanced by adjusting the air flow and heat transfer pattern through selecting the air inlet condition. Internal plate has less influence to the heat transfer characteristics.

  • PDF

A Water-Wall Model of Supercritical Once-Through Boilers Using Lumped Parameter Method

  • Go, Geon;Moon, Un-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1900-1908
    • /
    • 2014
  • This paper establishes a compact and practical model for a water-wall system comprising supercritical once-through boilers, which can be used for automatic control or simple analysis of the entire boiler-turbine system. Input and output variables of the water-wall system are defined, and balance equations are applied using a lumped parameter method. For practical purposes, the dynamic equations are developed with respect to pressure and temperature instead of density and internal energy. A comparison with results obtained using APESS, a practical thermal power plant simulator developed by Doosan Heavy Industries and Construction, is presented with respect to steady state and transient responses.

Experimental and Numerical Study of Low NOx Multi-Staged Burner in the Test Combustor (시험용 연소로에서의 다단 저 NOx 버너의 실험 및 수치적 연구)

  • Choi, Yun-Ki;Kang, Kyung-Tae;Lim, Ki-Suk;Ko, Dong-Wan;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1339-1347
    • /
    • 2004
  • Development of the low NOx heating boiler was strongly asked due to severe air pollution and the large number of boilers in korea. Compactness of the commercial boiler was also important because of low manufacturing cost and easy installation. In this study. newly developed compact low NOx burner, using turbulent gas diffusion combustion with multi-staged air supplies and multiple fuel nozzles, was investigated. Comparison study of the new burner was performed between experimental results and computational analysis. Commercial computational fluid dynamic(CFD) program named CFX-5.6 was used for numerical analysis of the low NOx burner inside the test combustor. Comparisons of experiment data and numerical result were performed under various equivalence ratio and fuel flow rate.

The Characteristics of NOx Emission for Premixed Combustion and Flame Rapid Cooling of MFB (메탈파이버 버너의 예혼합 연소 및 화염급냉에 따른 NOx 배출 특성)

  • Kim, Hyouck-Ju;Park, Byung-Sik;Kim, Jong-Jin;Jeong, Hae-Seung
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.172-179
    • /
    • 2001
  • Experimental studies have been carried out to find out the characteristics of the heat transfer, combustion emission and noise in the boilers without any extra firing zone for complete combustion of fuel. For the experiments a burner of premixed type and some heat exchangers were designed and manufactured. Also test facilities including a data acquisition system and various measuring devices were set up in order to measure automatically the various temperatures and flow rates of water and combustion gas. Various experiments were performed to find out the heat transfer characteristics as well as combustion emission and noise. In general, the burner which has uniform holes in the burner nozzle plate generates big combustion noise . whistling. The noise reduction method is discussed in this study. Many experimental data such as noise level, the amount of pollutant emission and heat transfer rate for different combination of heat exchangers are given as comparison bases for numerical studies.

  • PDF

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.148-154
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B) of 300 kW HRSG system, two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of boiler(Case C) and uniformity has been improved considerably. Secondly, the diverging channel length can be further reduced for compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.

  • PDF

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • Diverging channel from gas engine exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B), two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of the boiler(Case C) and uniformity in velocity and temperature distribution has been improved considerably. Secondly, the diverging channel length can be further reduced to compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.