• Title/Summary/Keyword: Compact Antenna

Search Result 327, Processing Time 0.024 seconds

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Miniaturized Design of Log-Periodic Dipole Array Antenna Using Half-Bowtie Dipole Elements (반-보우타이 모양 다이폴 소자를 이용한 대수-주기 다이폴 배열 안테나의 소형화 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1057-1062
    • /
    • 2016
  • In this paper, a design method for a compact log-perio dic half-bow-tie dipole array antenna for an operation in a UWB band(3.1-10.6 GHz) is studied. The proposed antenna is miniaturized by using half-bow-tie shaped dipole elements instead of strip-type dipole elements, which are commonly used in a general log-periodic dipole array(LPDA) antenna, and by reducing the element spacing. The effects of the flare angle of the half-bow-tie elements and the spacing factor on input reflection coefficient and realized gain characteristics of the proposed log-periodic antenna are analyzed. The optimized antenna is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 2.95-11.31 GHz for a VSWR < 2, which assures the operation in the UWB band. In addition, the length and width of the proposed antenna are reduced to 32.1 % and 18.3 %, respectively, compared to the LPDA antenna.

Design of Compact Planar Quasi-Yagi Antenna for DTV Reception (디지털방송 수신용 평면 준-야기 안테나의 소형화 설계)

  • Lee, Jong-Ig;Han, Dae-Hee;Kim, Soo-Min;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.583-585
    • /
    • 2012
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The coplanar strip line feeding the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type director at a location close to the driver dipole, a broadband impedance matching and a gain characteristics in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bowtie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Miniaturization of Open Stepped Slot Antenna (계단형 개방 슬롯 안테나의 소형화)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.61-62
    • /
    • 2016
  • In this paper, a design method for a compact stepped open slot antenna for an operation in the UWB band is studied. The proposed antenna is miniaturized by inserting L-shaped slots on the ground plane of the stepped open slot antenna through the creation of a resonance in the low frequency, and a strip director is appended to the antenna in order to increase the gain in the middle and high frequency regions. The effects of varying the length of the L-shaped slots, the distance between the director and the slot antenna, and the director length on input reflection coefficient and realized gain characteristics of the proposed antenna are analyzed. The optimized antenna with the size of $30mm{\times}30mm$ is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 3.02-11.04 GHz for a VSWR < 2, which assures the operation in the UWB band.

  • PDF

A CPW-fed Small Monopole Antenna for 5.1~5.8 GHz WLAN (5.1~5.8 GHz 무선랜용 CPW 급전 소형 모노폴 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1659-1665
    • /
    • 2019
  • In this paper, a novel design of a compact printed monopole antenna for wireless local area network (WLAN) applications is investigated. The radiator with a patch of different line width and step-shaped ground planes is used to reduce the antenna size. The size of the antenna is 16 × 17 × 1 ㎣ and is fabricated with a photolithography technique. The simulated and measured results agree well. The resonant frequency of the investigated antenna is about 5.2 GHz and can cover an impedance bandwidth of 1 GHz for the measurement result. In addition, we presented the measured radiation pattern, presented the gain and efficiency measured in the required WLAN 5 GHz frequency band (5.15-5.825 GHz), and confirmed that it can be used as a 5 GHz band WLAN antenna. The investigated antenna has a small size, light weight, low cost, omni-directional radiation pattern, high gain, and high efficiency.

Designs on CPW-FED Aperture Antenna for UWB Applications for Wireless System in a Ship (선박 내 무선 시스템을 위한 UWB용 CPW-FED APERTURE 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.347-351
    • /
    • 2008
  • In this paper, a new co-planar waveguide ultra-wideband aperture is designed as wireless application in ships. The designed antenna consists of a rectangular aperture on a determined ground plane and a mushroom shaped stub. The mushroom-shaped stub, which is simple, convenient to analyze and optimise, has less parameters. This antenna has compact aperture size $21.1{\times}8.1mm^2$, designed on FR-4 substrate with dielectric constant of 4.3, thickness of 1.5mm. CPW fed planar antenna has the advantages of wide-bandwidth, low-cost and easy interaction with the radio frequency front end circuitry.

  • PDF

A Design of Quad Band Internal Antenna for Hand-Held Mobile Phones (이동통신 단말기용 내장형 4대역안테나 설계)

  • Kang, Seo;Jeong, Yeon-Man;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.213-218
    • /
    • 2007
  • We propose a compact internal quard-band antenna with sufficient impedance bandwidths and gains for the GSM(Global Systems for Mobile), GPS(Global Positing System). DCS(Digital Codeless System), PCS (Personal Communication System) operation. The proposed antenna on a substrate. which is small enough to be installed in practical mobile phones, has heights of only 6mm from the substrate. In addition, the proposed antenna decreases the construction complex on the substrate. The GSM ($880MHz{\sim}960MHz$) GPS(1575MHz) DCS($1710MHz{\sim}1880MHz$). PCS($1750MHz{\sim}1870MHz$) bands. Details of the design and analysis of the proposed antenna are described and the experimental results of the constructed prototype are presented.

  • PDF

Wideband ENG Zeroth-Order Resonant Antenna Having Mushroom Shape (버섯 형태를 갖는 광대역 ENG 영차 공진 안테나)

  • Chang, Woo-Cheol;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.997-1002
    • /
    • 2009
  • This Letter presents a wideband ENG(Epsilon Negative) ZOR(Zeroth-Order Resonant) antenna designed on a microstrip line. It has a mushroom structure and its size is only $7.65{\times}1.31{\times}2.37\;mm$(or $0.306{\times}0.053{\times}0.095\;{\lambda}_0$ at 12 GHz) owing to zeroth-order resonance. The design procedures with closed form solutions are provided using transmission line theory considering radiation loss. The measured antenna bandwidth is about 20.0 % at 9.2 GHz and antenna gain is 7.1 dBi despite the compact size.

A compact Monopole Antenna Design for WLAN/WiMAX Triple Band Operations (WLAN/WiMAX 삼중대역에서 동작하는 모노폴 안테나의 설계)

  • Yoon, Joong-Han;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.465-473
    • /
    • 2012
  • In this study, a novel dual band planar monopole antenna for wireless local area network (WLAN)/ Worldwide Interoperability of Microwave Access (WiMAX) application was designed, fabricated, and measured. The proposed antenna consists of two hook shaped strips, an asymmetric ground plane, and a rectangular slit in the ground plane. Acceptable agreements between the measured and simulated results are achieved. Numerical and experimental results demonstrate that the proposed antenna satisfies the 10 dB impedance bandwidth requirement while covering the WLAN and WiMAX bands simultaneously. This paper also presents and discusses the 2D radiation patterns and 3D gains according to the results of the experiment that was conducted.

Design of a Pot-Shaped Monopole Antenna with Dual Band Notched Characteristics for UWB Application

  • Mok, Kwang Yun;Rhee, Young Chul;Yoon, Joong Han
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • A compact planar microstrip-fed ultra-wideband (UWB) antenna with a dual band-notched for UWB application is presented and analyzed. By inserting a U-shaped slot and inverted U-shaped slot into the pot-shaped radiator, two notched bands are achieved. By optimizing the width and length of the U-shaped slots and inverted U-shaped slot, a desired bandwidth of voltage standing wave ratio (VSWR) less than 2.0 can be achieved, ranging from UWB bands with notched dual bands. The proposed antenna is fabricated on an inexpensive FR-4 substrate with overall dimensions of $28.0mm{\times}39.5mm$. The measured results confirm that the proposed antenna covers from 1.775 to over 13.075 GHz with two rejection bands of around 3.325-3.925 GHz and 5.3125-6.025 GHz. In addition, the proposed antenna showed good radiation characteristics and gains in the UWB bands.