KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2587-2605
/
2022
In order to efficiently detect community structure in complex networks, community detection algorithms can be designed from the perspective of node similarity. However, the appropriate parameters should be chosen to achieve community division, furthermore, these existing algorithms based on the similarity of common neighbors have low discrimination between node pairs. To solve the above problems, a noval community detection algorithm using closeness similarity based on common neighbor node clustering entropy is proposed, shorted as CSCDA. Firstly, to improve detection accuracy, common neighbors and clustering coefficient are combined in the form of entropy, then a new closeness similarity measure is proposed. Through the designed similarity measure, the closeness similar node set of each node can be further accurately identified. Secondly, to reduce the randomness of the community detection result, based on the closeness similar node set, the node leadership is used to determine the most closeness similar first-order neighbor node for merging to create the initial communities. Thirdly, for the difficult problem of parameter selection in existing algorithms, the merging of two levels is used to iteratively detect the final communities with the idea of modularity optimization. Finally, experiments show that the normalized mutual information values are increased by an average of 8.06% and 5.94% on two scales of synthetic networks and real-world networks with real communities, and modularity is increased by an average of 0.80% on the real-world networks without real communities.
In view of the deficiencies of existing weighted similarity indexes, a hierarchical clustering method initialize-expand-merge (IEM) is proposed based on the similarity of common neighbors for community discovery in weighted networks. Firstly, the similarity of the node pair is defined based on the attributes of their common neighbors. Secondly, the most closely related nodes are fast clustered according to their similarity to form initial communities and expand the communities. Finally, communities are merged through maximizing the modularity so as to optimize division results. Experiments are carried out on many weighted networks, which have verified the effectiveness of the proposed algorithm. And results show that IEM is superior to weighted common neighbor (CN), weighted Adamic-Adar (AA) and weighted resources allocation (RA) when using the weighted modularity as evaluation index. Moreover, the proposed algorithm can achieve more reasonable community division for weighted networks compared with cluster-recluster-merge-algorithm (CRMA) algorithm.
Journal of the Korean Society of Environmental Restoration Technology
/
v.17
no.3
/
pp.35-51
/
2014
A phytosociological vegetation survey was conducted in July to September 2011 in order to examine the vegetation community structure in Mt. Ohseo area. It was aimed to provide basic data for the effective vegetation conservation by analyzing the importance, species diversity and community similarity of the forest community in Mt. Ohseo for each layer, followed by the classification of the actual forest vegetation. According to the cluster analysis, the community type of Mt. Ohseo was classified into a total of 4 vegetation communities: Pinus densiflora community, Cornus controversa-Quercus serrata community, Miscanthus sinensis community, and Quercus mongolica community; the vegetation type 4 showed the lowest species diversity index of 0.5236, and vegetation type-2 showed the highest species diversity index of 0.6606. The community similarity between Quercus mongolica community and Pinus densiflora community showed the highest 0.679, and the community similarity between Quercus serrata community and Pinus densiflora community and between Quercus serrata community and Quercus mongolica community showed the levels of 0.5, respectively.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.6
no.2
/
pp.100-104
/
2006
Fuzzy techniques can be applied in many domains of computer vision community. The definition of an adequate similarity measure for measuring the similarity between fuzzy sets is of great importance in the field of image processing, image retrieval and pattern recognition. This paper proposes a new class of the similarity measures. The properties, sensitivity and effectiveness of the proposed measures are investigated and tested on real data. Experimental results show that these similarity measures can provide a useful way for measuring the similarity between fuzzy sets.
Community portraits can deeply explore the characteristics of community structures and describe the personalized knowledge needs of community users, which is of great practical significance for improving community recommendation services, as well as the accuracy of resource push. The current community portraits generally have the problems of weak perception of interest characteristics and low degree of integration of topic information. To resolve this problem, the reader community portrait method based on the thematic and timeliness characteristics of interest labels (UIT) is proposed. First, community opinion leaders are identified based on multi-feature calculations, and then the topic features of their texts are identified based on the LDA topic model. On this basis, a semantic mapping including "reader community-opinion leader-text content" was established. Second, the readers' interest similarity of the labels was dynamically updated, and two kinds of tag parameters were integrated, namely, the intensity of interest labels and the stability of interest labels. Finally, the similarity distance between the opinion leader and the topic of interest was calculated to obtain the dynamic interest set of the opinion leaders. Experimental analysis was conducted on real data from the Douban reading community. The experimental results show that the UIT has the highest average F value (0.551) compared to the state-of-the-art approaches, which indicates that the UIT has better performance in the smooth time dimension.
Kim, Kyung Kyu;Shin, Hokyoung;Chang, Hang Bae;Kong, Young-Il
Knowledge Management Research
/
v.10
no.2
/
pp.105-119
/
2009
This study addresses the following questions : how does organization citizenship behavior(OCB) affect knowledge contribution in online communities? does the antecedents of OCB, cohesiveness and affection similarity, influence knowledge contribution in online communities? In order to test our hypotheses with an empirical study, we have conducted a survey which resulted in 192 valid response in the final sample. The PLS analysis results indicate that OCB affects knowledge contribution and coherence and affection similarity of online community users have influence on OCB. Further, knowledge contribution is influenced by community users' affection similarity. Practical implications of these findings and future research implications are also discussed.
Cho, Hyeon Jin;Na, Jeong Eun;Lee, Gun Ju;Lee, Hak Young
Korean Journal of Ecology and Environment
/
v.54
no.4
/
pp.291-302
/
2021
The phytoplankton community in the estuarine system is affected by changes of physicochemical factors easily. The present study analyzed phytoplankton community distribution and similarity, in addition to exploring factors influencing variations in phytoplankton community structure in three lakes located in the Yeongsan River estuary from March 2014 to November 2017. We carried out non-multidimensional scaling (NMDS) and random forest analysis (RF) for comparing the pattern of phytoplankton distribution and the relationship between phytoplankton distribution and environmental variables. Similarity Percentage (SIMPER) and Analysis of Similarity (ANOSIM) were performed to figure out the similarity of phytoplankton community at each site of three lakes. From NMDS, Phytoplankton community distribution differed between Yeongsan and Gumho lakes, and the factors influencing the distribution of phytoplankton communities across the three lakes were water temperature, dissolved oxygen, total nitrogen (T-N), nitrate-N (NO3-N), and conductivity. NO3-N was a key factor influencing phytoplankton community structure in the three lakes based on RF. A total of 24 species were identified as indicator species in the three lakes studied, with the highest species numbers observed in Yeongsan Lake (13) and the lowest observed in Yeongam Lake (2). According to SIMPER and ANOSIM results, the phytoplankton community in Yeongsan and Yeongam lakes were similar, and they differed from those in Gumho Lake. In addition, the phytoplankton community structure varied across the study sites in the three lakes, indicating that water channels across the lakes a minor influence phytoplankton community distribution.
This study was carried out in each three study areas of Pinus densiflora community and Quercus mongolica community from March 5th, 2008 to October 15th, 2010 to analyze the relationship between seed bank and the actual vegetation of the lower layer. Based on the relationship between the lower layer of actual vegetation and the germination of seed bank, all of three study areas, the similarity of the actual vegetation of the lower layer and seed bank were high in Plot 1 (84.62%) and Plot 3 (89.91%). As for Quercus mongolica community, the similarity was high between the actual vegetation of the lower layer and seed bank in Plot 4 (82.24%) and Plot 6 (89.47%). Especially, the germination of the pine seed banks in the Pinus densiflora community compared to other tree species appeared in all. In Quercus mongolica community, Quercus mongolica did not appear among the seeds germinated in the seek bank, but the other tree species constituting the under layer of the community. In case of the restoration based on the actual vegetation, it is desirable to sue the lower layer of vegetation as the model for the making of its alternatives for restoration works of the species.
Finding communities from network data including social networks can be done by clustering the nodes of the network as densely interconnected groups, where keeping interconnection between groups sparse. To exploit a clustering algorithm for community detection task, we need a well-defined similarity measure between network nodes. In this paper, we propose a new similarity measure named "Common Neighborhood Sub-graph density" and combine the similarity with affinity propagation, which is a recently devised clustering algorithm.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.366-369
/
2022
The glut of information aggravated the process of data analysis and other procedures including data mining. Many algorithms were devised in Big Data and Data Mining to solve such an intricate problem. In this paper, we conducted research about the comparison of several similarity measures and community detection algorithms in collaborative filtering for movie recommendation systems. Movielense data set was used to do an empirical experiment. We applied three different similarity measures: Cosine, Euclidean, and Pearson. Moreover, betweenness and eigenvector centrality were used to detect communities from the network. As a result, we elucidated which algorithm is more suitable than its counterpart in terms of recommendation accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.