• Title/Summary/Keyword: Community algorithm

Search Result 194, Processing Time 0.025 seconds

Unplugged Computing Education for Elementary School Traditional Folk Game-based on Yutnori (전통 민속놀이를 이용한 초등학교 언플러그드 컴퓨팅 교육-윷놀이를 중심으로)

  • Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.621-628
    • /
    • 2019
  • The 2015 revised curriculum offers elementary students an unplugged computing education as a way to learn the concepts and principles of computer science in an easy and fun way and to improve their computational thinking. Yutnori is a traditional board game unique to Korea, which contains various contents such as history, culture, and science of our people, which helps to cultivate cultural identity of learners, and can effectively promote cooperation and communication among members. In this paper, we examined the possibility that Yutnori could be used as an unplugged computing tool in elementary school software education and convergence education. Korean traditional board game Yutnori has elements that can learn the sun and movements of heavenly bodies as well as sequential, selection, and repetitive algorithm elements. Unplugged activities that apply Korean traditional culture Yutnori is expected to help foster creative convergence talents by improving elementary school students' computational thinking, communication and community.

Performance Evaluation of RSSI-based Various Trilateration Localization (RSSI기반에서 다양한 삼변측량 위치인식 기법들의 성능평가)

  • Kim, Sun-Gwan;Kim, Tae-Hoon;Tak, Sung-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.493-496
    • /
    • 2011
  • Currently in the development of community wireless technology is gaining interest in location-based services and as a result, the importance of the location information is a growing trend. To calculate the location information is being suggested several ways, among them Trilateration is representative. Trilateration is three beacon nodes, the distance between the location in which you want to calculate with information. Beacon from a node to know where to get information when the distance between the obstacle and the distance error caused by the surrounding environment, which leads to the exact location can not be obtained. Currently due to distance error, location information has a variety of algorithms to reduce the error. However, a systematic analysis of these algorithms is not progress. This paper analyzes the location-aware technologies, and the error the distance of the location information to reduce errors in the various aspects of the algorithm for the systematic and empirical comparison was evaluated through the analysis.

  • PDF

Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery (Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Jang, Min-Won;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

Classification Model of Facial Acne Using Deep Learning (딥 러닝을 이용한 안면 여드름 분류 모델)

  • Jung, Cheeoh;Yeo, Ilyeon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.381-387
    • /
    • 2019
  • The limitations of applying a variety of artificial intelligence to the medical community are, first, subjective views, extensive interpreters and physical fatigue in interpreting the image of an interpreter's illness. And there are questions about how long it takes to collect annotated data sets for each illness and whether to get sufficient training data without compromising the performance of the developed deep learning algorithm. In this paper, when collecting basic images based on acne data sets, the selection criteria and collection procedures are described, and a model is proposed to classify data into small loss rates (5.46%) and high accuracy (96.26%) in the sequential structure. The performance of the proposed model is compared and verified through a comparative experiment with the model provided by Keras. Similar phenomena are expected to be applied to the field of medical and skin care by applying them to the acne classification model proposed in this paper in the future.

Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics (동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템)

  • Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.183-189
    • /
    • 2021
  • In recent years, active research has been devoted toward developing a monitoring system using ambient vibration data in order to quantitatively determine the deterioration occurring in a structure over a long period of time. This study developed a low-cost edge computing system that detects the abnormalities in structures by utilizing the dynamic characteristics acquired from the structure over the long term for ensemble learning. The system hardware consists of the Raspberry Pi, an accelerometer, an inclinometer, a GPS RTK module, and a LoRa communication module. The structural abnormality detection afforded by the ensemble learning using dynamic characteristics is verified using a laboratory-scale structure model vibration experiment. A real-time distributed processing algorithm with dynamic feature extraction based on the experiment is installed on the Raspberry Pi. Based on the stable operation of installed systems at the Community Service Center, Pohang-si, Korea, the validity of the developed system was verified on-site.

A Study on Soil Moisture Estimates Performance Using Various Land Surface Models (다양한 지표모형을 활용한 토양수분 예측 성능 평가 연구)

  • Jang, Ye-Geun;Sin, Seoung-Hun;Lee, Tae-Hwa;Jang, Won-Seok;Shin, Yong-Chul;Jang, Keun-Chang;Chun, Jung-Hwa;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.79-89
    • /
    • 2022
  • Soil moisture is significantly related to crop growth and plays an important role in irrigation management. To predict soil moisture, various process-based model has been developed and used in the world. Various models (Land surface model) may have different performance depending on the model parameters and structures that causes the different model output for the same modeling condition. In this study, the three land surface models (Noah Land Surface Model, Soil Water Atmosphere Plant, Community Land Model) were used to compare the model performance (soil moisture prediction) and develop the multi-model simulation. At first, the genetic algorithm was used to estimate the optimal soil parameters for each model, and the parameters were used to predict soil moisture in the study area. Then, we used the multi-model approach based on Bayesian model averaging (BMA). The results derived from this approach showed a better match to the measurements than the results from the original single land surface model. In addition, identifying the strengths and weaknesses of the single model and utilizing multi-model methods can help to increase the accuracy of soil moisture prediction.

Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel (관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용)

  • Kim, Kwi-Hoon;Kim, Ma-Ga;Yoon, Pu-Reun;Bang, Je-Hong;Myoung, Woo-Ho;Choi, Jin-Yong;Choi, Gyu-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

Data anomaly detection for structural health monitoring of bridges using shapelet transform

  • Arul, Monica;Kareem, Ahsan
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.93-103
    • /
    • 2022
  • With the wider availability of sensor technology through easily affordable sensor devices, several Structural Health Monitoring (SHM) systems are deployed to monitor vital civil infrastructure. The continuous monitoring provides valuable information about the health of the structure that can help provide a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing a relatively new time series representation named "Shapelet Transform" in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation based solely on the shape of the time series data. Considering the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithms on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from an SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.

A Study on Generating Public Library Service Areas Considering User Access Patterns (이용자의 접근 패턴을 고려한 공공도서관 서비스 영역 생성 연구)

  • Woojin Kang;Jongwook Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.3
    • /
    • pp.89-107
    • /
    • 2023
  • Public libraries should plan and provide services that satisfy various needs of the local community users. In order to understand library users, it is essential first to grasp the service areas of libraries. The current service areas of public libraries are primarily set based on administrative boundaries of the areas where the libraries are located, which limits the consideration of actual user access patterns to the libraries. In this study, we aim to create service areas that incorporate the transportation and geographical characteristics of the library's surroundings and reflect the access patterns of library users. Specifically, we utilized street network data from 502 libraries in 7 metropolitan cities to determine the travel distance and time from user locations, considering gradients, to the libraries. Subsequently, we applied the shortest path algorithm to generate service areas within a 30-minute walking or driving range. As a result, we confirmed that there are differences in the service area patterns of libraries depending on topographical factors, and this better reflects the realistic conditions of library access compared to service areas based on straight-line distances. This method of generating service areas contributes to a more accurate understanding of library users' numbers, characteristics, and needs.

Prediction of Stunting Among Under-5 Children in Rwanda Using Machine Learning Techniques

  • Similien Ndagijimana;Ignace Habimana Kabano;Emmanuel Masabo;Jean Marie Ntaganda
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • Objectives: Rwanda reported a stunting rate of 33% in 2020, decreasing from 38% in 2015; however, stunting remains an issue. Globally, child deaths from malnutrition stand at 45%. The best options for the early detection and treatment of stunting should be made a community policy priority, and health services remain an issue. Hence, this research aimed to develop a model for predicting stunting in Rwandan children. Methods: The Rwanda Demographic and Health Survey 2019-2020 was used as secondary data. Stratified 10-fold cross-validation was used, and different machine learning classifiers were trained to predict stunting status. The prediction models were compared using different metrics, and the best model was chosen. Results: The best model was developed with the gradient boosting classifier algorithm, with a training accuracy of 80.49% based on the performance indicators of several models. Based on a confusion matrix, the test accuracy, sensitivity, specificity, and F1 were calculated, yielding the model's ability to classify stunting cases correctly at 79.33%, identify stunted children accurately at 72.51%, and categorize non-stunted children correctly at 94.49%, with an area under the curve of 0.89. The model found that the mother's height, television, the child's age, province, mother's education, birth weight, and childbirth size were the most important predictors of stunting status. Conclusions: Therefore, machine-learning techniques may be used in Rwanda to construct an accurate model that can detect the early stages of stunting and offer the best predictive attributes to help prevent and control stunting in under five Rwandan children.