• Title/Summary/Keyword: Community algorithm

Search Result 194, Processing Time 0.022 seconds

A Framework for developing the automated management system of environmental complaints in construction projects

  • Hong, Juwon;Kang, Hyuna;Hong, Taehoon;An, Jongbaek;Jung, Seunghoon
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.417-422
    • /
    • 2020
  • Vast quantities of environmental pollutants from construction projects are causing significant damage to nearby local communities and thus generate environmental complaints. The construction company, responsible for compensating and resolving environmental complaints, suffers economic damages due to additional expenditures and schedule delays in construction projects. Meanwhile, the construction industry can stagnate from a broader perspective. Therefore, this study aimed to propose a framework for developing an automated management system which consists of two models for environmental complaints in construction projects: (i) the prediction model: a model for predicting environmental complaints based on factors related to environmental complaints; and (ii) the prevention model: a model for providing construction companies with the optimal prevention measure to effectively prevent environmental complaints according to the results of the prediction model. In addition, the algorithm for integrating the developed models into the management system in construction projects was proposed. Eventually, the application of the management system to construction projects can ensure the profitability of construction companies and mitigate damage from environmental pollutants to the nearby local community.

  • PDF

Movie Recommendation System using Community Detection and Parallel Programming (커뮤니티 탐지 및 병렬 프로그래밍을 이용한 영화 추천 시스템)

  • Sadriddinov Ilkhomjon;Yixuan Yang;Sony Peng;Sophort Siet;Dae-Young Kim;Doo-Soon Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.389-391
    • /
    • 2023
  • In the era of Big Data, humanity is facing a huge overflow of information. To overcome such an obstacle, many new cutting-edge technologies are being introduced. The movie recommendation system is also one such technology. To date, many theoretical and practical kinds of research have been conducted. Our research also focuses on the movie recommendation system by implementing methods from Social Network Analysis(SNA) and Parallel Programming. We applied the Girvan-Newman algorithm to detect communities of users, and a future package to perform the parallelization. This approach not only tries to improve the accuracy of the system but also accelerates the execution time. To do our experiment, we used the MovieLense Dataset.

Early Diagnosis of anxiety Disorder Using Artificial Intelligence

  • Choi DongOun;Huan-Meng;Yun-Jeong, Kang
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.242-248
    • /
    • 2024
  • Contemporary societal and environmental transformations coincide with the emergence of novel mental health challenges. anxiety disorder, a chronic and highly debilitating illness, presents with diverse clinical manifestations. Epidemiological investigations indicate a global prevalence of 5%, with an additional 10% exhibiting subclinical symptoms. Notably, 9% of adolescents demonstrate clinical features. Untreated, anxiety disorder exerts profound detrimental effects on individuals, families, and the broader community. Therefore, it is very meaningful to predict anxiety disorder through machine learning algorithm analysis model. The main research content of this paper is the analysis of the prediction model of anxiety disorder by machine learning algorithms. The research purpose of machine learning algorithms is to use computers to simulate human learning activities. It is a method to locate existing knowledge, acquire new knowledge, continuously improve performance, and achieve self-improvement by learning computers. This article analyzes the relevant theories and characteristics of machine learning algorithms and integrates them into anxiety disorder prediction analysis. The final results of the study show that the AUC of the artificial neural network model is the largest, reaching 0.8255, indicating that it is better than the other two models in prediction accuracy. In terms of running time, the time of the three models is less than 1 second, which is within the acceptable range.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Comparison of Nutrient Intakes Regarding Stages of Change in Dietary Fiber Increasing for College Students in Kyunggi-Do (경기 일부지역 대학생의 섬유소 섭취 행동단계에 따른 영양소 섭취상태 비교)

  • Chung, Eun-Jung
    • Korean Journal of Community Nutrition
    • /
    • v.10 no.5
    • /
    • pp.592-602
    • /
    • 2005
  • This study was conducted to compare nutrient intakes regarding stages of change in dietary fiber increasing behavior. Subjects were consisted of healthy 383 college students (2S0 females and 133 males) in Kyunggi-Do. Stages of change classified by an algorithm based on 6 items were designed each subjects into one of the 5 stages: precontemplation (PC), contemplation (CO), preparation (PR), action (AC), maintenance (MA). Nutrient intakes were assessed by 24-hr recall method. Regarding the S stages of changes, PR stage comprised the largest group $(39.4\%)$, followed by AC $(33.7\%)$, MA$(14.6\%)$, PC$(7.6\%)$, CO$(34.7\%)$. Female were more belong to either AC or MA. The higher stage of change in dietary fiber increasing behavior, the higher self-efficacy. In all male and female, there were no differences in energy, protein, monounsaturated fatty acids, polyunsaturated fatty acids and cholesterol intakes across the 5 stages. But, fiber, postassuim (K), vitamin A and vitamin C intakes of AC or MA were higer than those of PC, CO and PR $Energy\%$ from fat of $PR(25.4\~26.5\%)$ was higher than $20\%$, and those of AC and MA was lower than the other groups. Dietary P/S and ${\varepsilon}6/{\varepsilon}$ 3 ratios of AC and MA were similar to the recommended ratio. Female of PR had the most total saturated fat and palmitic acid and those of MA had the least. Male of PR had the least $\alpha-LNA\;({\varepsilon}3)$ and total ${\varepsilon}3$ fatty acids and those of MA had the most. In male and female in AC or MA, fiber and K intakes from breakfast, dinner and snack and vitamin C intakes from all meals were higher than those of the other stages. These results of our study confirm differences in stages of change in fiber intake in terms of nutritional status. To have lower $energy\%$ from fat, higher intakes of K, fiber and vitamins, desirable ratio of dietary fatty acids, it needs consistent nutritional education leading to the AC or MA of fiber increasing behavior.

Analysis of Geographic Network Structure by Business Relationship between Companies of the Korean Automobile Industry (한국 자동차산업의 기업간 거래관계에 의한 지리적 네트워크 구조 분석)

  • KIM, Hye-Lim;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.58-72
    • /
    • 2021
  • In July 2021, UNCTAD classified Korea as a developed country. After the Korean War in the 1950s, economic development was promoted despite difficult conditions, resulting in epoch-making national growth. However, in order to respond to the rapidly changing global economy, it is necessary to continuously study the domestic industrial ecosystem and prepare strategies for continuous change and growth. This study analyzed the industrial ecosystem of the automobile industry where it is possible to obtain transaction data between companies by applying complexity spatial network analysis. For data, 295 corporate data(node data) and 607 transaction data (link data) were used. As a result of checking the spatial distribution by geocoding the address of the company, the automobile industry-related companies were concentrated in the Seoul metropolitan area and the Southeastern(Dongnam) region. The node importance was measured through degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, and the network structure was confirmed by identifying density, distance, community detection, and assortativity and disassortivity. As a result, among the automakers, Hyundai Motor, Kia Motors, and GM Korea were included in the top 15 in 4 indicators of node centrality. In terms of company location, companies located in the Seoul metropolitan area were included in the top 15. In terms of company size, most of the large companies with more than 1,000 employees were included in the top 15 for degree centrality and betweenness centrality. Regarding closeness centrality and eigenvector centrality, most of the companies with 500 or less employees were included in the top 15, except for automakers. In the structure of the network, the density was 0.01390522 and the average distance was 3.422481. As a result of community detection using the fast greedy algorithm, 11 communities were finally derived.

Improved Sentence Boundary Detection Method for Web Documents (웹 문서를 위한 개선된 문장경계인식 방법)

  • Lee, Chung-Hee;Jang, Myung-Gil;Seo, Young-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2010
  • In this paper, we present an approach to sentence boundary detection for web documents that builds on statistical-based methods and uses rule-based correction. The proposed system uses the classification model learned offline using a training set of human-labeled web documents. The web documents have many word-spacing errors and frequently no punctuation mark that indicates the end of sentence boundary. As sentence boundary candidates, the proposed method considers every Ending Eomis as well as punctuation marks. We optimize engine performance by selecting the best feature, the best training data, and the best classification algorithm. For evaluation, we made two test sets; Set1 consisting of articles and blog documents and Set2 of web community documents. We use F-measure to compare results on a large variety of tasks, Detecting only periods as sentence boundary, our basis engine showed 96.5% in Set1 and 56.7% in Set2. We improved our basis engine by adapting features and the boundary search algorithm. For the final evaluation, we compared our adaptation engine with our basis engine in Set2. As a result, the adaptation engine obtained improvements over the basis engine by 39.6%. We proved the effectiveness of the proposed method in sentence boundary detection.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

HummingBird: A Similar Music Retrieval System using Improved Scaled and Warped Matching (HummingBird: 향상된 스케일드앤워프트 매칭을 이용한 유사 음악 검색 시스템)

  • Lee, Hye-Hwan;Shim, Kyu-Seok;Park, Hyoung-Min
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.409-419
    • /
    • 2007
  • Database community focuses on the similar music retrieval systems for music database when a humming query is given. One of the approaches is converting the midi data to time series, building their indices and performing the similarity search on them. Queries based on humming can be transformed to time series by using the known pitch detection algorithms. The recently suggested algorithm, scaled and warped matching, is based on dynamic time warping and uniform scaling. This paper proposes Humming BIRD(Humming Based sImilaR mini music retrieval system) using sliding window and center-aligned scaled and warped matching. Center-aligned scaled and warped matching is a mixed distance measure of center-aligned uniform scaling and time warping. The newly proposed measure gives tighter lower bound than previous ones which results in reduced search space. The empirical results show the superiority of this algorithm comparing the pruning power while it returns the same results.

Multi parameter optimization framework of an event-based rainfall-runoff model with the use of multiple rainfall events based on DDS algorithm (다중 강우사상을 반영한 DDS 알고리즘 기반 단일사상 강우-유출모형 매개변수 최적화 기법)

  • Yu, Jae-Ung;Oh, Se-Cheong;Lee, Baeg;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.887-901
    • /
    • 2022
  • Estimation of the parameters for individual rainfall-rainfall events can lead to a different set of parameters for each event which result in lack of parameter identifiability. Moreover, it becomes even more ambiguous to determine a representative set of parameters for the watershed due to enhanced variability exceeding the range of model parameters. To reduce the variability of estimated parameters, this study proposed a parameter optimization framework with the simultaneous use of multiple rainfall-runoff events based on NSE as an objective function. It was found that the proposed optimization framework could effectively estimate the representative set of parameters pertained to their physical range over the entire watershed. It is found that the difference in NSE value of optimization when it performed individual and multiple rainfall events, is 0.08. Furthermore, In terms of estimating the observed floods, the representative parameters showed a more improved (or similar) performance compared to the results obtained from the single-event optimization process on an NSE basis.