International conference on construction engineering and project management
/
2020.12a
/
pp.417-422
/
2020
Vast quantities of environmental pollutants from construction projects are causing significant damage to nearby local communities and thus generate environmental complaints. The construction company, responsible for compensating and resolving environmental complaints, suffers economic damages due to additional expenditures and schedule delays in construction projects. Meanwhile, the construction industry can stagnate from a broader perspective. Therefore, this study aimed to propose a framework for developing an automated management system which consists of two models for environmental complaints in construction projects: (i) the prediction model: a model for predicting environmental complaints based on factors related to environmental complaints; and (ii) the prevention model: a model for providing construction companies with the optimal prevention measure to effectively prevent environmental complaints according to the results of the prediction model. In addition, the algorithm for integrating the developed models into the management system in construction projects was proposed. Eventually, the application of the management system to construction projects can ensure the profitability of construction companies and mitigate damage from environmental pollutants to the nearby local community.
Sadriddinov Ilkhomjon;Yixuan Yang;Sony Peng;Sophort Siet;Dae-Young Kim;Doo-Soon Park
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.389-391
/
2023
In the era of Big Data, humanity is facing a huge overflow of information. To overcome such an obstacle, many new cutting-edge technologies are being introduced. The movie recommendation system is also one such technology. To date, many theoretical and practical kinds of research have been conducted. Our research also focuses on the movie recommendation system by implementing methods from Social Network Analysis(SNA) and Parallel Programming. We applied the Girvan-Newman algorithm to detect communities of users, and a future package to perform the parallelization. This approach not only tries to improve the accuracy of the system but also accelerates the execution time. To do our experiment, we used the MovieLense Dataset.
International Journal of Advanced Culture Technology
/
v.12
no.1
/
pp.242-248
/
2024
Contemporary societal and environmental transformations coincide with the emergence of novel mental health challenges. anxiety disorder, a chronic and highly debilitating illness, presents with diverse clinical manifestations. Epidemiological investigations indicate a global prevalence of 5%, with an additional 10% exhibiting subclinical symptoms. Notably, 9% of adolescents demonstrate clinical features. Untreated, anxiety disorder exerts profound detrimental effects on individuals, families, and the broader community. Therefore, it is very meaningful to predict anxiety disorder through machine learning algorithm analysis model. The main research content of this paper is the analysis of the prediction model of anxiety disorder by machine learning algorithms. The research purpose of machine learning algorithms is to use computers to simulate human learning activities. It is a method to locate existing knowledge, acquire new knowledge, continuously improve performance, and achieve self-improvement by learning computers. This article analyzes the relevant theories and characteristics of machine learning algorithms and integrates them into anxiety disorder prediction analysis. The final results of the study show that the AUC of the artificial neural network model is the largest, reaching 0.8255, indicating that it is better than the other two models in prediction accuracy. In terms of running time, the time of the three models is less than 1 second, which is within the acceptable range.
Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
Geophysics and Geophysical Exploration
/
v.18
no.4
/
pp.223-231
/
2015
Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.
This study was conducted to compare nutrient intakes regarding stages of change in dietary fiber increasing behavior. Subjects were consisted of healthy 383 college students (2S0 females and 133 males) in Kyunggi-Do. Stages of change classified by an algorithm based on 6 items were designed each subjects into one of the 5 stages: precontemplation (PC), contemplation (CO), preparation (PR), action (AC), maintenance (MA). Nutrient intakes were assessed by 24-hr recall method. Regarding the S stages of changes, PR stage comprised the largest group $(39.4\%)$, followed by AC $(33.7\%)$, MA$(14.6\%)$, PC$(7.6\%)$, CO$(34.7\%)$. Female were more belong to either AC or MA. The higher stage of change in dietary fiber increasing behavior, the higher self-efficacy. In all male and female, there were no differences in energy, protein, monounsaturated fatty acids, polyunsaturated fatty acids and cholesterol intakes across the 5 stages. But, fiber, postassuim (K), vitamin A and vitamin C intakes of AC or MA were higer than those of PC, CO and PR $Energy\%$ from fat of $PR(25.4\~26.5\%)$ was higher than $20\%$, and those of AC and MA was lower than the other groups. Dietary P/S and ${\varepsilon}6/{\varepsilon}$ 3 ratios of AC and MA were similar to the recommended ratio. Female of PR had the most total saturated fat and palmitic acid and those of MA had the least. Male of PR had the least $\alpha-LNA\;({\varepsilon}3)$ and total ${\varepsilon}3$ fatty acids and those of MA had the most. In male and female in AC or MA, fiber and K intakes from breakfast, dinner and snack and vitamin C intakes from all meals were higher than those of the other stages. These results of our study confirm differences in stages of change in fiber intake in terms of nutritional status. To have lower $energy\%$ from fat, higher intakes of K, fiber and vitamins, desirable ratio of dietary fatty acids, it needs consistent nutritional education leading to the AC or MA of fiber increasing behavior.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.3
/
pp.58-72
/
2021
In July 2021, UNCTAD classified Korea as a developed country. After the Korean War in the 1950s, economic development was promoted despite difficult conditions, resulting in epoch-making national growth. However, in order to respond to the rapidly changing global economy, it is necessary to continuously study the domestic industrial ecosystem and prepare strategies for continuous change and growth. This study analyzed the industrial ecosystem of the automobile industry where it is possible to obtain transaction data between companies by applying complexity spatial network analysis. For data, 295 corporate data(node data) and 607 transaction data (link data) were used. As a result of checking the spatial distribution by geocoding the address of the company, the automobile industry-related companies were concentrated in the Seoul metropolitan area and the Southeastern(Dongnam) region. The node importance was measured through degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, and the network structure was confirmed by identifying density, distance, community detection, and assortativity and disassortivity. As a result, among the automakers, Hyundai Motor, Kia Motors, and GM Korea were included in the top 15 in 4 indicators of node centrality. In terms of company location, companies located in the Seoul metropolitan area were included in the top 15. In terms of company size, most of the large companies with more than 1,000 employees were included in the top 15 for degree centrality and betweenness centrality. Regarding closeness centrality and eigenvector centrality, most of the companies with 500 or less employees were included in the top 15, except for automakers. In the structure of the network, the density was 0.01390522 and the average distance was 3.422481. As a result of community detection using the fast greedy algorithm, 11 communities were finally derived.
In this paper, we present an approach to sentence boundary detection for web documents that builds on statistical-based methods and uses rule-based correction. The proposed system uses the classification model learned offline using a training set of human-labeled web documents. The web documents have many word-spacing errors and frequently no punctuation mark that indicates the end of sentence boundary. As sentence boundary candidates, the proposed method considers every Ending Eomis as well as punctuation marks. We optimize engine performance by selecting the best feature, the best training data, and the best classification algorithm. For evaluation, we made two test sets; Set1 consisting of articles and blog documents and Set2 of web community documents. We use F-measure to compare results on a large variety of tasks, Detecting only periods as sentence boundary, our basis engine showed 96.5% in Set1 and 56.7% in Set2. We improved our basis engine by adapting features and the boundary search algorithm. For the final evaluation, we compared our adaptation engine with our basis engine in Set2. As a result, the adaptation engine obtained improvements over the basis engine by 39.6%. We proved the effectiveness of the proposed method in sentence boundary detection.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.6
/
pp.48-60
/
2011
Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.
Database community focuses on the similar music retrieval systems for music database when a humming query is given. One of the approaches is converting the midi data to time series, building their indices and performing the similarity search on them. Queries based on humming can be transformed to time series by using the known pitch detection algorithms. The recently suggested algorithm, scaled and warped matching, is based on dynamic time warping and uniform scaling. This paper proposes Humming BIRD(Humming Based sImilaR mini music retrieval system) using sliding window and center-aligned scaled and warped matching. Center-aligned scaled and warped matching is a mixed distance measure of center-aligned uniform scaling and time warping. The newly proposed measure gives tighter lower bound than previous ones which results in reduced search space. The empirical results show the superiority of this algorithm comparing the pruning power while it returns the same results.
Estimation of the parameters for individual rainfall-rainfall events can lead to a different set of parameters for each event which result in lack of parameter identifiability. Moreover, it becomes even more ambiguous to determine a representative set of parameters for the watershed due to enhanced variability exceeding the range of model parameters. To reduce the variability of estimated parameters, this study proposed a parameter optimization framework with the simultaneous use of multiple rainfall-runoff events based on NSE as an objective function. It was found that the proposed optimization framework could effectively estimate the representative set of parameters pertained to their physical range over the entire watershed. It is found that the difference in NSE value of optimization when it performed individual and multiple rainfall events, is 0.08. Furthermore, In terms of estimating the observed floods, the representative parameters showed a more improved (or similar) performance compared to the results obtained from the single-event optimization process on an NSE basis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.