• Title/Summary/Keyword: Community Forest

Search Result 1,326, Processing Time 0.024 seconds

Landscape Fragmentation of Circular Greenspace in Cheongju and Requirements for a Sustainable Development (청주시 환상녹지의 경관 파편화 실태와 지속가능한 녹지관리 방안 모색)

  • Kim, Jai-Han
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.1
    • /
    • pp.79-97
    • /
    • 2012
  • This study examines on the impact of biodiversity in circular greenspace of Cheongju city since 2002 greenbelt release. Research has carried out to investigate the biotope pattern change with landscape fragmentation. Major landscape fragmentation has occurred with development of residential sector and build-up of major highways. Settlement has been expanded to the entire area connected to urban district excluding the eastern forest. North-south district shows high road density, where inter-regional roads meet in the cross-section. It is found that landscape fragmentation impact on species richness as well as population size of the species varies depending on the animal species. The birds show high species richness in N2, N3, N4, S2(north-south zone) even with high fragmentation rate. This can be explained that birds can access to aquatic environment where they can find abundant food resources. The amphibians and the reptiles show almost no zonal variation in species richness than the birds. The more a zone fragmented in small patches, the species richness of the amphibians and the reptiles also tends to be declined. Information accumulation on biodiversity for integrating landscape planning in urban planning, various level of community participation in decision making process, and cross border cooperation with neighbouring Cheongwon-gun will be required for sustainable greenspace management of Cheongju City.

  • PDF

The Monitoring and Ecological Restoration Concept of Ecosystem Conservation Area in Dunchon, Seoul (서울시 둔촌동 습지 생태계보전지역 모니터링 및 생태적 복원구상)

  • 한봉호;김정호;홍석환
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.3
    • /
    • pp.242-257
    • /
    • 2003
  • This study surveyed an ecosystem conservation area that is wetland area to establish ecological restoration and preservation plan. Monitoring standard have been set up item, method, period, number of times etc. Result that examine according to monitoring standard, Plant field investigated Flora, actual vegetation. Flora is 132 taxa(39 family 116 species 19 variety 1 forma) appeared and wild species were 85 species, and introduced species were 47 species. Grasped monthly(April∼September) actual vegetation, swampy plant community influence were increase and influence of Persicaria thunbergii was big situation specially. Frequency appearance of naturalized plant is much on field. Animal field investigated Birds, Herpetofauna, Insecta. Birds were appeared 34 species 378 individual and Herpetofauna were appeared 4 species 5 individual and insecta investigated 11 order 52 family 153 species. Inorganic environmental field investigated groundwater level, quality of water, soil quality. Groundwater level is high by 0.0∼89.0cm, $Ca^{++}$ content is some high by 2.18∼13.73cmol/kg in soil. Also we suggested basis direction and each space details plan on monitoring as follow : wetland ecosystem restoration plan, eruption area restoration plan, forest ecosystem restoration plan.n.

Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN (기후변화와 강우분포 및 CN에 따른 미래 홍수량 평가)

  • Kwak, Jihye;Kim, Jihye;Jun, Sang Min;Hwang, Soonho;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.85-95
    • /
    • 2020
  • According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However, due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods' volume by using climate change scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distribution and new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying the modified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climate change was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volume increased by 627 ㎥/s (15%) and 523 ㎥/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 ㎥/s (3.76%) on a 200-yr frequency and 171 ㎥/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 ㎥/s (0.30%) on a 200-yr frequency and 8.5 ㎥/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made the flood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.

A Study on the Morphological Management of Major Landscape Elements in Organic Farming (유기농업단지 주요경관요소의 물리적 관리방안에 관한 연구)

  • An, Phil Gyun;Kong, Min Jea;Lee, Sang Min;Kim, Sang Bhum;Jo, Jung Lae;Kim, Nam Chun;Shin, Ji Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.107-116
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Therefore, this study was carried out in the conservative aspects of rural landscapes in order to effectively manage the landscape of organic agriculture and, intended to be used to maintain and preserve natural and ecologically harmonious landscapes by deriving management methods suitable for landscape elements targeting the major landscape elements of the organic farming complex. To carry out, this study performed the experts survey which is composed of 13 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result, Farm land was formed in a square shape, concentrated in an independent space, planted companion plants around the crop, and covered with plants to manage the borders. As for the surrounding environment, it was analyzed that the aspart road system circulating through the village, the evergreen broad-leaved windbreak forest around the cultivated land, and the accent plant located at the entrance of the village were suitable. The hydrological environment consists of Round small pond made of stone in an open space, natural rivers around the village, and natural channels around the farmland, and The Major facilities are suitable for greenhouses that are shielded by plants in independent regions, and wooden duck houses located inside the cultivation area are suitable and The settlement facilities were analyzed to be suitable for single-story brick houses located in independent residential areas, pavilion located with greenery in the center of the village, and educational spaces shielded with wood from arable land. If supplementary evaluation criteria suitable for the management of organic farming landscape are additionally supplemented based on the results derived from this study, It is expected to enhance the landscape value of ecologically superior organic farming.

Monitoring on the Structure and Dynamics of Abies nephrolepis Populations in Seoraksan National Park (설악산국립공원 분비나무개체군의 구조와 동태 모니터링)

  • Chun, Young-Moon;Lee, Ho-Young;Gwon, Jae-Hwan;Park, Hong-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.565-577
    • /
    • 2019
  • The purpose of this study was to understand the factors influencing the decline and the patterns of changes in Abies nephrolepis populations on Mt. Seorak. We installed permanent quadrats in the areas of the Gwittagicheongbong (peak), Gwanmoneungseon (ridge), and the Seorak Falls and have monitored the community structure, population dynamics, radial growth, and vitality in the quadrats since 2009. Excluding the Seorak Falls, the three research sites showed a three-layer structure in which the low-tree layer forms the canopy. Major tree species were Khingan fir, Korean arborvitae, Mongolian oak, Erman's birch, and Korean maple. The significance of Khingan fir in Seorak Falls decreased from 45.3% in 2009 to 36.8% in 2018. The number of shoots ($DBH{\geq}5cm$) was highest at 1,800 individuals/ha and 1,700 individuals/ha at the Gwittagicheongbong 2 and the Gwanmoneungseon, respectively. The mortality rates over the past 10 years were very high, at 38.3% and 35.3%, respectively, in the Gwittagicheongbong 1 and Seorak Falls. The most stable inverse J-shaped distribution in the Gwittagicheongbong 1 area was shown in the size-frequency distribution of the Khingan fir populations. The average annual ring growth of the Khingan fir was 0.96 ~ 1.73 mm/year, and the ring growth tended to decrease in the areas of Gwittagicheongbong 1, Gwanmoneungseon, and Seorak Falls, where the vitality was low. If the monitoring process continues, it will be possible to obtain basic data for the conservation and management of subalpine vegetation.

Spatial Distribution Patterns of Oplismenus undulatifolius var. undulatifolius on Mt. Hanwoo in Korea (한우산에 분포하는 주름조개풀의 공간적 양상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1262-1267
    • /
    • 2018
  • The patchiness of local environments within a habitat is assumed to be a primary factor affecting the spatial patterns of plants. In this study, a randomization procedure was developed to test the null hypothesis that only spatial association with patches determines the spatial patterns of plants. Oplismenus undulatifolius (Ard.) P. Beauv. var. undulatifolius is an herbaceous plant and a member of the genus Oplismenus in the family Poaceae. Oplismenus hirtellus subsp. undulatifolius occurs in temperate, subtropical, and tropical areas of the world. The spatial pattern of O. undulatifolius var. undulatifolius was analyzed using dispersion indices in different sizes of plots according to several patchiness indexes, population uniformity, or aggregation. Population densities (D) at Mt. Hanwoo varied from 0.453 to 4.375, with a mean of 2.387. The small and mid-sized plots ($2m{\times}2m$, $2m{\times}4m$, $4m{\times}4m$, $4m{\times}8m$, and $8m{\times}8m$) of O. undulatifolius var. undulatifolius were aggregated in the forest community. However, O. undulatifolius var. undulatifolius was uniformly distributed in three large plots ($8m{\times}16m$, $16m{\times}16m$, and $16m{\times}32m$). The greatest mean crowding ($M^*$) and patchiness index (PAI) showed positive values. Aggregation is mainly caused by environmental factors. Many plants on Mt. Hanwoo are being disturbed by climbers, which is preventing these plants from inhabiting their realized niches on Mt. Hanwoo.

Assessment of Future Agricultural Land Use and Climate Change Impacts on Irrigation Water Requirement Considering Greenhouse Cultivation (시설재배를 고려한 미래 농지이용 변화와 기후변화가 관개 필요수량에 미치는 영향 평가)

  • SON, Moo-Been;HAN, Dae-Young;KIM, Jin-Uk;SHIN, Hyung-Jin;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.120-139
    • /
    • 2020
  • This study is to assess the future agricultural land use and climate change impacts on irrigation water requirement using CLUE-s(Conversion of Land Use and its Effects at Small regional extent) and RCP(Representative Concentration Pathway) 4.5 and 8.5 HadGEM3-RA(Hadley Centre Global Environmental Model version 3 Regional Atmosphere) scenario. For Nonsan city(55,517.9ha), the rice paddy, upland crop, and greenhouse cultivation were considered for agricultural land uses and DIROM(Daily Irrigation Reservoir Operation Model) was applied to benefited areas of Tapjeong reservoir (5,713.3ha) for Irrigation Water Requirement(IWR) estimation. For future land use change simulation, the CLUE-s used land uses of 2007, 2013, and 2019 from Ministry of Environment(MOE) and 6 classes(water, urban, rice paddy, upland crop, forest, and greenhouse cultivation). In 2100, the rice paddy and upland crop areas decreased 5.0% and 7.6%, and greenhouse cultivation area increased 24.7% compared to 2013. For the future climate change scenario considering agricultural land use change, the RCP 4.5 and RCP 8.5 2090s(2090~2099) IWR decreased 2.1% and 1.0% for rice paddy and upland crops, and increased 11.4% for greenhouse cultivation compared to pure application of future climate change scenario.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Spatial Distribution Pattern of Patches of Erythronium japonicum at Mt. Geumjeong in Korea (한국 금정산에 븐포하고 있는 얼레지의 공간적 분포 양상과 집단 구조)

  • Man Kyu Huh
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • The purpose of this paper was to describe a statistical analysis for the spatial distribution of geographical distances of Erythronium japonicum at Mt. Geumjeong in Korea. The spatial pattern of E. japonicum was analyzed according to the nearest neighbor rule, population aggregation under different plot sizes by dispersion indices, and spatial autocorrelation. Most natural plots of E. japonicum were uniformly distributed in the forest community. Disturbed plots were aggregately distributed within 5 m × 5 m of one another. Neighboring patches of E. japonicum were predominantly 7.5~10 m apart on average. If the natural populations of E. japonicum were disturbed by human activities, then the aggregation occurred in a shorter distance than the 7.5~10 m distance scale. The Morisita index (IM) is related to the patchiness index (PAI) that showed the 2.5 m × 5 m plot had an overly steep slope at the west and south areas when the area was smaller than 5 m × 5 m. When the patch size was one 2.5 m × 5 m quadrat at the west distributed area of Mt. Geumjeong, the cluster was determined by both species characteristics and environmental factors. The comparison of Moran's I values to a logistic regression indicated that individuals in E. japonicum populations at Mt. Geumjeong could be explained by isolation by distance.

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.