• 제목/요약/키워드: Communication algorithm

검색결과 7,845건 처리시간 0.037초

Integrative Comparison of Burrows-Wheeler Transform-Based Mapping Algorithm with de Bruijn Graph for Identification of Lung/Liver Cancer-Specific Gene

  • Ajaykumar, Atul;Yang, Jung Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.149-159
    • /
    • 2022
  • Cancers of the lung and liver are the top 10 leading causes of cancer death worldwide. Thus, it is essential to identify the genes specifically expressed in these two cancer types to develop new therapeutics. Although many messenger RNA (mRNA) sequencing data related to these cancer cells are available due to the advancement of next-generation sequencing (NGS) technologies, optimized data processing methods need to be developed to identify the novel cancer-specific genes. Here, we conducted an analytical comparison between Bowtie2, a Burrows-Wheeler transform-based alignment tool, and Kallisto, which adopts pseudo alignment based on a transcriptome de Bruijn graph using mRNA sequencing data on normal cells and lung/liver cancer tissues. Before using cancer data, simulated mRNA sequencing reads were generated, and the high Transcripts Per Million (TPM) values were compared. mRNA sequencing reads data on lung/liver cancer cells were also extracted and quantified. While Kallisto could directly give the output in TPM values, Bowtie2 provided the counts. Thus, TPM values were calculated by processing the Sequence Alignment Map (SAM) file in R using package Rsubread and subsequently in python. The analysis of the simulated sequencing data revealed that Kallisto could detect more transcripts and had a higher overlap over Bowtie2. The evaluation of these two data processing methods using the known lung cancer biomarkers concludes that in standard settings without any dedicated quality control, Kallisto is more effective at producing faster and more accurate results than Bowtie2. Such conclusions were also drawn and confirmed with the known biomarkers specific to liver cancer.

비정상심박 검출을 위해 영상화된 심전도 신호를 이용한 비교학습 기반 딥러닝 알고리즘 (Comparative Learning based Deep Learning Algorithm for Abnormal Beat Detection using Imaged Electrocardiogram Signal)

  • 배진경;곽민수;노경갑;이동규;박대진;이승민
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.30-40
    • /
    • 2022
  • 심전도 신호는 개인에 따라 형태와 특징이 다양하므로, 하나의 신경망으로는 분류하기가 어렵다. 주어진 데이터를 직접적으로 분류하는 것은 어려우나, 대응되는 정상 데이터가 있을 경우, 이를 비교하여 정상 및 비정상을 분류하는 것은 상대적으로 쉽고 정확하다. 본 논문에서는 템플릿 군을 이용하여 대표정상심박 정보를 획득하고, 이를 입력 심박에 결합함으로써 심박을 분류한다. 결합된 심박을 영상화한 후, 학습 및 분류를 진행하여, 하나의 신경망으로도 다양한 레코드의 비정상심박을 검출이 가능하였다. 특히, GoogLeNet, ResNet, DarkNet 등 다양한 신경망에 대해서도 비교학습 기법을 적용한 결과, 모두 우수한 검출성능을 가졌으며, GoogLeNet의 경우 99.72%의 민감도로, 실험에 사용된 신경망 중 가장 우수한 성능을 가졌음을 확인하였다.

제조 현장 데이터 전송효율 향상을 위한 압축 알고리즘 비교 및 분석 (Comparison and analysis of compression algorithms to improve transmission efficiency of manufacturing data)

  • 이민정;오성빈;김진호
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.94-103
    • /
    • 2022
  • 제조 현장의 센서나 기기들에서 생성된 대량의 데이터들이 서버나 클라이언트로 전송되면서 네트워크 처리시간 지연, 스토리지 자원 비용 증가의 문제가 발생한다. 이러한 문제 해결을 위해 실시간 대응성과 무중단 공정이 필수인 제조 현장을 고려하여 실시간 및 무손실 압축이 가능한 QRC(Quotient Remainder Compression)와 BL_beta 압축 알고리즘을 처음으로 실제 제조 현장 센서 데이터에 적용하여 실험 결과로 두 알고리즘 중 어떤 알고리즘이 성능이 좋은지 비교 분석하였다. 실험 결과는 BL_beta가 QRC보다 압축률이 높았다. QRC의 데이터 크기를 조금 조정하여 동일한 데이터로 실험을 진행한 실험결과는 데이터 크기를 조정한 QRC 알고리즘이 기존 QRC와 BL_beta 압축 알고리즘보다 압축률이 35.48%, 20.3% 더 높았다.

LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법 (Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF)

  • 박성현;강석훈
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.15-23
    • /
    • 2022
  • 지속적 학습 환경을 위한 학습 방법 중 LwF(Learning without Forgetting)는 정규화 강도가 고정되어 있어 다양한 데이터가 들어오는 환경에서 성능이 하락 할 수 있다. 본 논문에서는 학습하려는 데이터의 특징을 파악하여 가중치를 가변적으로 설정할 수 있는 방법을 제안하고, 실험으로 성능을 검증한다. 상관 관계와 복잡도를 이용하여 적응적으로 가중치를 적용하도록 하였다. 평가를 위해 다양한 데이터를 가진 태스크가 들어오는 시나리오를 구성하여 실험을 진행하였고, 실험 결과 새로운 태스크의 정확도가 최대 5%, 이전 태스크의 정확도가 최대 11% 상승하였다. 또한, 본 논문에서 제안한 알고리즘으로 구한 적응적 가중치 값은, 각 실험 시나리오마다 반복적 실험에 의해, 수동으로 계산한 최적 가중치 값에 접근한 것을 알 수 있었다. 상관 계수 값은 0.739 이었고, 전체적으로 평균 태스크 정확도가 상승하였다. 본 논문의 방법은, 새로운 태스크를 학습할 때마다 적절한 람다 값을 적응적으로 설정하였으며, 본 논문에서 제시한 여러 가지 시나리오에서 최적의 결과값을 도출하고 있다는 것을 알 수 있다.

소프트웨어 교육을 위한 웹 페이지 기반의 프로그래밍 교육 및 채점 시스템 (Web page-based programming education and scoring system for software education)

  • 조민우;최지영;정회경
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.134-139
    • /
    • 2022
  • 최근 프로그래밍과 인공지능에 대한 관심이 지속적으로 높아지고 있으며 초등학교부터 필수 교육으로 소프트웨어 교육을 실시하고 있다. 효율적인 프로그래밍 교육을 위해서 기본적으로 학생과 교사에게 적합한 실습실 환경을 구축해야 하지만 노후 컴퓨터와 네트워크 장비 구축 미비 등으로 인한 성능 문제가 있으며 이러한 컴퓨터들의 교체를 통해 성능을 높이는 일은 단기간에 현실적으로 불가능하다. 따라서 본 논문에서는 프로그래밍 실습 환경에 대한 문제 해결을 위해 React와 Spring boot를 사용하여 웹 페이지 기반의 온라인 실습환경 및 알고리즘 경진대회 채점 시스템을 제안한다. 이를 통해 사양이 낮은 컴퓨터에서도 웹 브라우저만을 사용하여 프로그래밍 학습을 진행할 수 있을 것으로 사료된다. 또한 학습하고자 하는 언어와 관계없이 여러 가지 프로그래밍 언어를 학습할 수 있으므로 실습 환경 구축을 위해 시간적 비용을 줄일 수 있을 것으로 사료된다.

인물관계망의 대용량 그래프 표현과 최단 경로 탐색 (Massive Graph Expression and Shortest Path Search in Interpersonal Relationship Network)

  • 민경주;진병찬;정만호
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.624-632
    • /
    • 2022
  • 인물관계망이나 네비게이션의 경로 탐색과 같은 관계망은 그래프 형태로 표현할 수 있다. 하지만 데이터 양이 많아지면서 한 화면에 표현할 때 원하는 데이터 탐색이 어려운 문제가 있다. 본 논문에서는 많은 노드를 갖는 인물관계망을 표현하기 위해 그래프를 사용해 인물의 검색, 인물 사이의 최단 경로 검색 및 탐색 결과에 대한 시각화 방법을 제시한다. 라우팅 테이블에서의 최단 경로와 달리 인물관계망에서의 최단 경로는, 분석하는 사용자의 의도나 관계의 중요도에 따라 변경 가능해야 한다. 이를 위해 인물관계망의 특성을 적용하기 위해 너비우선탐색 알고리즘을 변형하였다. 결과 검증을 위해, 한국고전번역원의 한국고전종합DB 인물관계정보에 있는 데이터를 활용하였다.

Weight Adjustment Scheme Based on Hop Count in Q-routing for Software Defined Networks-enabled Wireless Sensor Networks

  • Godfrey, Daniel;Jang, Jinsoo;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.22-30
    • /
    • 2022
  • The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties, such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network, where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among competing performance metrics.

구조적 압축을 통한 FPGA 기반 GRU 추론 가속기 설계 (Implementation of FPGA-based Accelerator for GRU Inference with Structured Compression)

  • 채병철
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.850-858
    • /
    • 2022
  • 리소스가 제한된 임베디드 장치에 GRU를 배포하기 위해 이 논문은 구조적 압축을 가능하게 하는 재구성 가능한 FPGA 기반 GRU 가속기를 설계한다. 첫째, 조밀한 GRU 모델은 하이브리드 양자화 방식과 구조화된 top-k 프루닝에 의해 크기가 대폭 감소한다. 둘째, 본 연구에서 제시하는 재사용 컴퓨팅 패턴에 의해 외부 메모리 액세스에 대한 에너지 소비가 크게 감소한다. 마지막으로 가속기는 알고리즘-하드웨어 공동 설계 워크플로의 이점을 얻는 구조화된 희소 GRU 모델을 처리할 수 있다. 또한 모든 차원, 시퀀스 길이 및 레이어 수를 사용하여 GRU 모델에 대한 추론 작업을 유연하게 수행할 수 있다. Intel DE1-SoC FPGA 플랫폼에 구현된 제안된 가속기는 일괄 처리가 없는 구조화된 희소 GRU 네트워크에서 45.01 GOPs를 달성하였다. CPU 및 GPU의 구현과 비교할 때 저비용 FPGA 가속기는 대기 시간에서 각각 57배 및 30배, 에너지 효율성에서 300배 및 23.44배 향상을 달성한다. 따라서 제안된 가속기는 실시간 임베디드 애플리케이션에 대한 초기 연구로서 활용, 향후 더 발전될 수 있는 잠재력을 보여준다.

사용자 손 제스처 인식 기반 입체 영상 제어 시스템 설계 및 구현 (Design and Implementation of a Stereoscopic Image Control System based on User Hand Gesture Recognition)

  • 송복득;이승환;최홍규;김성훈
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.396-402
    • /
    • 2022
  • 영상 미디어를 위한 사용자 인터랙션은 다양한 형태로 개발되고 있으며, 특히, 인간의 제스처를 활용한 인터랙션이 활발히 연구되고 있다. 그 중에, 손 제스처 인식의 경우 3D Hand Model을 기반으로 실감 미디어 분야에서 휴먼 인터페이스로 활용되고 있다. 손 제스처 인식을 기반으로 한 인터페이스의 활용은 사용자가 미디어 매체에 보다 쉽고 편리하게 접근할 수 있도록 도와준다. 이러한 손 제스처 인식을 활용한 사용자 인터랙션은 컴퓨터 환경 제약 없이 빠르고 정확한 손 제스처 인식 기술을 적용하여 영상을 감상할 수 있어야 한다. 본 논문은 오픈 소스인 미디어 파이프 프레임워크와 머신러닝의 k-NN(K-Nearest Neighbor)을 활용하여 빠르고 정확한 사용자 손 제스처 인식 알고리즘을 제안한다. 그리고 컴퓨터 환경 제약을 최소화하기 위하여 인터넷 서비스가 가능한 웹 서비스 환경 및 가상 환경인 도커 컨테이너를 활용하여 사용자 손 제스처 인식 기반의 입체 영상 제어 시스템을 설계하고 구현한다.

인공지능 기반의 자율형 교통정보 응용에 대한 연구 (A Study on Application of Autonomous Traffic Information Based on Artificial Intelligence)

  • 오암석
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.827-833
    • /
    • 2022
  • 본 연구는 교통정보를 수집하기 위한 검지기 와 돌발 상황 검지에 사용되는 다양한 알고리즘들의 분석을 통해 기존 교통정보 수집체계의 한계를 극복하여 심각도가 높은 2차 교통사고를 예방하고자 한다. 즉 본 연구는 2차 교통사고를 유발하는 돌발 상황과 기존 교통정보 수집체계를 분석하고 그에 알맞은 2차 교통사고의 선제적 예방이 가능한 솔루션 및 도로 전 구간에 대한 정확한 정보수집이 가능한 지능화된 새로운 교통정보 수집 및 전달체계를 제시한다. 실험결과 데이터 전송 신뢰도는 95% 기준 97%를, 데이터 전송 속도는 1000ms 기준 평균 209ms, 네트워크 장애복구 시간은 120sec 기준 50sec의 목표치를 달성하였다.