• Title/Summary/Keyword: Communication Ocean Meteorological Satellite (COMS)

Search Result 199, Processing Time 0.03 seconds

Combined Gain Analysis of L-band Transmit Antenna in COMS (COMS L-대역 송신 안테나 합성 이득 해석)

  • Kim, Joong-Pyo;Yang, Koon-Ho;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • The COMS (Communication Ocean Meteorological Satellite) is a hybrid geostationary satellite including communication, ocean, and meteorological payloads. The COMS includes the MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station, and relaying the meteorological data processed on the ground to the end-user stations. Here, for the L-band transmit antenna transmitting SD (Sensor Data) signal and the processed signal, from the system point of view, it is required to estimate the combined antenna gain when the L-band transmit is placed with MI and GOCI payloads on the earth panel of COMS. First of all, the L-band transmit horn is designed and analyzed for the requirements given, and then after placing it on the earth panel, the combined gain analysis is performed using three different analysis methods. It's shown that the obtained gain patterns are very similar among three different analysis methods. Finally the antenna gain degradation of less than 0.5 dB is estimated.

A Preliminary Performance Analysis of the Meteorological and Ocean Data Communication Subsystem in COMS (통신해양기상위성 기상해양데이터통신계의 예비 성능 해석)

  • Kim, Jung-Pyo;Yang, Gun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 2006
  • The COMS (Communication, Ocean, and Meteorological Satellite) performing meteorological and ocean monitoring and providing communication service with meteorological, ocean and Ka-band payload in the geostationary orbit includes MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station and relaying the meteorological data processed on the ground to the end-user stations. MODCS comprises of two channels: SD channel which formats the raw data according to CCSDS recommendation, amplifies and transmits its signal to the ground station; MPDR channel which relays to the end-user stations the ground-processed meteorological data in the data format of LRIT/HRIT recommended by CGMS. This paper constructs the architecture of MODCS for transmitting and relating the observed data, and investigates that the key performance parameters have the required margin through the preliminary performance analyses.

  • PDF

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • Lee, Soo-Jeon;Jung, Won-Chan;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

Characteristics of COMS MI Radiometric Calibration

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.71-74
    • /
    • 2006
  • Communication Ocean Meteorological Satellite (COMS) is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological imager (MI) is one of COMS payloads and has 5 spectral channels to monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The MI has on-board radiometric calibration capabilities called 'blackbody calibration' for infrared channels and 'space look' for infrared/visible channels, and radiometric response stability monitoring device called 'albedo monitor' for visible channel. Additionally the MI has on-board function called 'electrical calibration' for the check of imaging path electronics of both infrared and visible channels. The characterization of MI performance is performed to provide the pre-launch radiometric calibration data which will be used for in-orbit radiometric calibration with the on-board calibration outputs. The radiometric calibration of the COMS MI is introduced in the view point of instrument side in terms of in-orbit calibration devices and capabilities as well as the pre-launch calibration activities and expected outputs.

  • PDF

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

Conceptual Design of the Meteorological Data Service for COMS

  • Kim, Jong-Woo;Lim, Hyun-Su;Seo, Seok-Bae;Choi, Hae-Jin;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.513-515
    • /
    • 2003
  • COMS(Communication, Ocean and Meteorological Satellite), planned for launch in 2008, will be the first Korean ocean-meteorological geostationary satellite to provide capabilities for monitoring weather and ocean. Under the direction of Korean government, KARI(Korea Aerospace Research Institute) has the overall responsibility of COMS development project. The main development project was started in September 2003. In this paper, the overview of COMS development project and the conceptual design of the meteorological data service are introduced.

  • PDF

A Design of Image Preprocessing Subsystem for COMS (통신해양기상위성 영상 데이터 전처리 시스템 설계)

  • Seo Seok-Bae;Koo In-Hoi;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.390-393
    • /
    • 2006
  • 본 논문에서는 현재 개발 중인 통신해양기상위성(COMS : Communication, Ocean and Meteorological Satellite)의 데이터를 처리하는 영상 데이터 전처리 시스템 (IMPS, IMage Preprocessing Subsystem)의 설계 과정과 예비설계 결과를 설명한다.

  • PDF

A REVIEW FOR DEVELOPING THERMODYNAMIC MODEL OF COMS CPS

  • Chae, Jong-Won;Han, Cho-Young;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.179-182
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geosynchronous satellite and has been developing by KARI and Astrium for Ka-band communication, ocean observation and meteorological observation. COMS Chemical Propulsion System (CPS) uses a bipropellant propulsion subsystem, which is applied for transferring COMS from GTO to GEO (mission orbit) and implementing station-keeping manoeuvres. In this paper COMS CPS is briefly introduced for understanding. A few of mathematical thermodynamic modelings of bipropellant propulsion system in literatures are reviewed and authors has studied those models for developing a computer program, which predicts variations of thermodynamic properties such as temperature and pressure histories in the helium pressurant tank, MMH propellant tank and NTO propellant tank during LAE firing and on-orbit manoeuvrings. The CPS thermodynamic model may be used to compute pressurant and propellant masses and to size tank volumes.

  • PDF

Availability of Land Surface Temperature from the COMS in the Korea Peninsula (한반도에서의 천리안 위성 지표면 온도 유용성 평가)

  • Baek, Jong-Jin;Choi, Min-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.755-765
    • /
    • 2012
  • The Land Surface Temperature (LST) is one of the significant factors to understand the water and energy cycles between the land surface and atmosphere. However, few previous studies for spatio-temporal variations of LST has been investigated. In this study, we conducted comparative analyses between the Communication, Ocean and Meteorological Satellite (COMS) and MOderate-Resolution Imaging Spectroradiometer (MODIS) LST data. We compared COMS data with observations to identify the accuracy and found relative underestimated patterns of the COMS data as compared to observations. We also found that COMS LST were underestimated in compare to MODIS LST. The Terra LST was verified to have more similar trends with the COMS LST rather than Aqua LST. While we identified the applicability of COMS based on the results of similar tendencies of two comparisons, more intensive validation research at a variety of field conditions should be conducted to gurantee current COMS LST.