• Title/Summary/Keyword: Commercial fertilizer

Search Result 134, Processing Time 0.017 seconds

A New High Qualilty Rice Variety with High Head Rice Ratio and Milling Recovery, "Chilbo" (완전미율, 도정수율 높은 중만생 고품질 벼 신품종 "칠보(七寶)")

  • Kim, Jeong-Il;Chang, Jae-Ki;Park, No-Bong;Yeo, Un-Sang;Oh, Byeong-Geun;Kang, Jung-Hun;Kwon, Oh-Deog;Shin, Mun-Sik;Park, Dong-Soo;Kwak, Do-Yeon;Lee, Jong-Hee;Song, You-Cheon;Kim, Chun-Song;Cho, Jun-Hyun;Yi, Gihwan;Lee, Ji-Yoon;Nam, Min-Hee;Kim, Sang-Yeol;Ahn, Jong-Woong;Ku, Yeon-chung;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.547-551
    • /
    • 2009
  • A new commercial rice variety "Chilbo" is a japonica rice (Oryza sativa L.) with resistance to rice stripe virus and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, NICS, RDA in 2007. This variety was derived from a cross between "Yeongdeog 26" with wind tolerance and lodging resistance and "Koshihikari" with good grain quality. A promising line, YR21324-119-3-2 was selected by a pedigree breeding method and designated as "Yeongdeog 44" in 2004. Regional adaptation yield trials were carried out at eleven locations from 2005 to 2007. As a result, "Yeongdeog 44" was released as a high yielding rice variety with high grain qualilty and virus resistance with the name of "Chilbo". It is short 76cm in culm length and has medium-late growth duration. This variety is resistant to stripe virus and middle resistant to leaf blast disease. It is also tolerant to cold, dried wind. Milled rice kernel of "Chilbo" is translucent, clear in chalkiness. Panel test proved that and it has good eating quality. Head rice ratio of Chilbo is high compared to the check variety, Hwaseongbyeo. Yield potential of "Chilbo" in milled rice is about 5.57MT/ha at ordinary fertilizer level of local adaptability test. This variety would be adaptable to Yeongnam plain, south & east-south coastal, south mid-mountainous, middle plain area of Korean peninsula.

A New High Qualilty Rice Variety with Lodging Resistance and Multiple Resistance to Diseases, "Donghaejinmi" (중만생 고품질 내도복 복합내병성 벼 신품종 "동해진미(東海珍味)")

  • Yeo, Un-Sang;Kim, Jeong-Il;Lee, Jeom-Sig;Park, No-Bong;Chang, Jae-Ki;Oh, Byeong-Geun;Kang, Jung-Hun;Kwak, Do-Yeon;Cho, Jun-Hyun;Lee, Jong-Hee;Kwon, Oh-Deog;Lee, Ji-Yoon;Nam, Min-Hee;Kim, Sang-Yeol;Ku, Yeon-Chung;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.288-291
    • /
    • 2009
  • A new commercial rice variety "Donghaejinmi" is a japonica rice (Oryza sativa L.) with lodging resistance and high grain quality. It has been developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA. This variety was derived from a cross between "Milyang 64" as a resistance source of brown planthopper (Bph) and "Milyang 165" as grain quality source. The donor parent, "Milyang64" has been backcrossed three times with recurrent parent, "Milyang165" and selected by the pedigree breeding method. The pedigree of "Donghaejinmi", designated as "Yeongdeog 41" in 2003, was YR21259-B-B-68-1. It has a short culm length with 69 cm and medium-late growth time. This variety is resistant to stripe virus and moderately resistant to leaf blast disease with durable resistance. It also has tolerance to unfavorable environment such as cold, dried wind and storm. Milled rice kernel of "Donghaejinmi" is translucent, clear in chalkness and good at eating quality in panel test. The merit of this variety is high head rice ratio, which is essential element to produce an article of superior quality rice brand. The yield potential of "Donhaejinmi" in milled rice is about 6.05 MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Yeongnam inland plains and eastern costal area of Yeongnam province.

Composting Method and Physicochemical Characteristics of By-products from Home Garden Plants and Small Herbivore Feces (옥수수 부산물과 토끼 분변의 이화학적 성분특성 및 퇴비 제조조건)

  • Kim, Dae-Gyun;Kim, Jin-Young;Lee, Won-Suk;Kim, Hye-Hyeong;Seo, Myung-Whoon;Park, In-Tae;Hyun, Junge;Yoo, Gayoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • This study was conducted to suggest a sustainable farming practice forresource recycling in vegetable gardens of North Korea. In North Korea, farmers are allowed to own private vegetable gardens less than $100m^2$. However, usage of fertilizers in private vegetable gardens is very limited due to economic sanctions by UN security council. If North and South Korea initiated the cooperative action in the near future, agricultural sector would be the highest priority cooperation area. Considering the current North Korean situation in agriculture, we would like to suggest a method for producing organic fertilizer manure. For raw materials for producing manure, we selected corn byproduct, which is the most abundant material, and rabbits' feces, which are easily obtained from individual private farms in North Korea. As we cannot get corn byproducts and rabbits' feces from North Korea, we prepared samples of corn byproducts and rabbits; feces from many places in South Korea. After statistical analysis of variance, there was no significant difference in the T-N contents of corn byproducts from Gyeonggi, Gangwon, Chungnam, Chungbuk, Jeollabuk and Gyeongsangnam-dos, which indicates that the fertilizing quality of corn byproducts does not vary significantly in the spatial scale of South. Korea. In this sense, if we use corn samples from Gyeonggi province, they would not be very different from those of North Korean regions. Physicochemical properties of rabbits' feces were different between those eating feed grains and those eating plants only. Hence, we used rabbits' feces of the rabbits from Yeonchun area, which were fed by plants only. Using three different mixing ratios of corn byproducts and rabbits' feces, composting was conducted for 60 days. The mixing ratio of 1:1 produced the manure with % T-N of 1.98% and OM/N ratio of 31.7 after 30 days of composting, which is comparable to the quality of commercial manure.

Effects of Initial Shoot, Root Length, and Acclimating Substrates on Survival Rate of Plantlets Regenerated from Somatic Embryos of Larix kaempferi (일본잎갈나무 체세포배 유래 식물체의 초기 신초와 뿌리 길이, 순화용 기질이 생존율에 미치는 영향)

  • Lee, Na Nyum;Yun, A Young;Kim, Ji Ah;Kim, Tae Dong;Kim, Yong Wook;Han, Sim Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • We analyzed the growth characteristics of each cell line and acclimating substrate of Larix kaempferi plantlets regenerated from somatic embryos, with the goal of increasing the survival rate during the acclimation phase. Somatic embryos from three embryogenic cell lines (L14-66, L16-18, and L17-B4) were used, and the acclimating substrates were commercial soils for Larix species (Larix-Soil) and horticultural corps (Hort-Soil), Elle-pot, and Peat-plug. The average initial shoot and root length was shortest in L14-66 and longest in L17-B4. The average survival rate by cell line was highest (87.0%) in L17-B4 and lowest (64.3%) for L14-66. Survival rates by substrate were highest in Elle-pot (88.5%) and Peat-plug (88.9%). The initial shoot length of the L14-66 plantlets was highly correlated with survival rates in the Larix-Soil (r = 0.852), Hort-Soil (r = 0.692), and Elle-pot (r = 0.867) substrates, but not in Peat-plug with high total nitrogen content. The initial shoot length of the L17-B4 plantlets was not correlated with the survival rate in any of the substrates. The initial root length of the L14-66 plantlets was highly related to survival rates in the Larix-Soil (r = 0.986), Elle-pot (r = 0.846), and Peat-plug (r = 0.802) substrates, and the survival rate of the plantlets was higher as the initial root length was longer. The initial root length of the L17-B4 plantlets was related to survival rate only in the Larix-Soil (r = 0.896) and Elle-pot (r = 0.696) substrates. In conclusion, to increase the survival rate of plantlets, root length should be considered over shoot length, and it is recommended to use substrates with high nitrogen content, such as Peat-plug, or to add fertilizer, during the acclimating process. In addition, in order to increase the survival rate, lines with high initial growth should be developed.