• Title/Summary/Keyword: Commercial catalyst

Search Result 287, Processing Time 0.028 seconds

A Study on Hybrid DeNOx Process Using Selective Catalytic Reduction and Adsorption (선택적촉매환원과 흡착을 이용한 복합 탈질공정 연구)

  • Moon, Seung-Hyun;Jeon, Dong-Hwan;Park, Sung-Youl
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1329-1336
    • /
    • 2007
  • This study was carried out to develop an efficient process abating high NO concentration. A hybrid process of selective catalytic reduction(SCR) and activated carbon fiber(ACF) adsorption was newly designed and tested. Used ACF in NO adsorption was regenerated by simultaneously applying heat and vacuum. The result of ACF regeneration was for superior in the desorption condition at $140^{\circ}C$ and vacuum 600 mmHg. A commercial catalyst was used at the conditions of reaction temperature at $300^{\circ}C$, $NH_3/NO$ mole ratio = 1.0 for SCR process. NO evolved from ACF regeneration reactor could be removed by SCR reactor up to 98%. But high concentration of NO was exhausted from SCR reactor for one minute when the flue gas of NO 300 ppm and deserted NO from ACF regeneration were simultaneously treated by the same SCR reactor. Therefore, it is necessary to use additional small sized SCR reactor or to increase $NH_3$ concentration for a short time along with NO concentration rather than to mix flue gas with the gas evolving from ACF regeneration at fixed $NH_3$ inlet concentration. The hybrid process of SCR and ACF showed high NO removal efficiency over 80% at any time courses. Through the repeated cycles, stable DeNOx efficiency was maintained, indicating that the hybrid process would be a good countermeasure to the spotaneously high NO concentration instead of increasing the SCR capacity.

Study on crystallization behavior of an ethylene-polypropylene copolymer based encapsulant for photovoltaic application (태양전지 봉지재용 에틸렌-프로펠렌 공중합체의 결정화 거동에 관한 연구)

  • Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.737-742
    • /
    • 2016
  • We prepared five different ethylene-propylene copolymers (EPCs) for use as the encapsulant of a photovoltaic module. All of the polymers were of commercial grade from ExxonMobile company and had different ethylene/propylene compositions. The crystallization behaviors and crystal structures of the polymers were analyzed by differential scanning calorimetry and wide angle X-ray scattering diffractometry, respectively. We observed the general trend that the degree of crystallization, density and glass transition temperature of the EPCs decreased with increasing ethylene content. However, an unexpected result was also observed: the EPC with the highest ethylene content (22.2 mol. %) showed the highest melting temperature. As a result, the EPC with 22.2 mol. % of ethylene shows the highest light transmittance, due to its having the lowest degree of crystallization and highest thermal creep resistance. This abnormal result is attributed to the blocky structure prepared by ExxonMobile's special catalyst technology. It was also observed that new additional melting peaks appeared as the crystallization time increased. Using wide angle X-ray scattering diffractometry, it was confirmed that these additional peaks originated from the formation of a new crystal structure caused by annealing.

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions (고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향)

  • Kim, Jin-Ho;Ryu, Jae-Hong;Kang, Suk-Hwan;Yoo, Young-Don;Kim, Jun-Woo;Go, Dong-Jun;Jung, Moon;Lee, Jong-Min
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • In this work, we performed the methanation reaction using synthesis gas ($H_2/CO_2$) for the process to produce synthetic natural gas (SNG) for $4^{th}$ methanation reactor in SNG process proposed by RIST-IAE. Experimental conditions were changed with temperature, pressure and space velocity. At this time, $CO_2$ conversion, $CH_4$ selectivity and $H_2$ concentration after reaction were investigated. As a result, $CH_4$ selectivity by the $CO_2$ methanation increased with lower space velocity and higher pressure. On the other hand, in the case of temperature, the maximum value was shown at $320^{\circ}C$. From these results, it was found that the optimum condition of the fourth reactor suitable for the SNG process was obtained.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Curing and Coating Properties of Photo-Curable Self-Photoinitiating Acrylate (광경화형 자가광개시 아크릴레이트의 경화특성 및 도막물성)

  • Han, A-Ram;Hong, Jin-Who;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Self-photoinitiating acrylate (SPIA) which can undergo self-initiation under UV irradiation was synthesized by a Michael addition in the presence of a base catalyst. The SPIA polymerizations were investigated by photo-differential scanning calorimeter (photo-DSC) and surface physical properties such as pendulum hardness and pencil hardness. The results showed that the SPIA can cure upon UV irradiation by itself without a photoinitiator. But we found out that both the curing rate and the conversion were too low for the self-curing reaction of SPIA. In order to improve the SPIA curing properties, we introduced the SPIA/cationic hybrid system and observed the effects of the addition of commercial free radical type monomer and photoinitiator on the curing behaviors. SPIA/cationic hybrid system was the best suitable to improve the SPIA curing properties. The kinetic analysis indicated that the cationic monomer and photoinitiator apparently accelerated the cure reaction and rate of the hybrid SPIA system, mostly due to the synergistic effect of cationic monomer and photoinitiator increasing the mobility of active species and the generation of reactive species (free radical, cation) during the photopolymerization process. The physical properties showed that, unlike typical free radical system, the hybrid systems did not show oxygen inhibition effect because of cationic reaction on the coating surface.

Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst (금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향)

  • Kim, Han-Gyu;Yang, Yoon-Cheol;Jeong, Kwang-Eun;Kim, Tae-Wan;Jeong, Soon-Yong;Kim, Chul-Ung;Jhung, Sung Hwa;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.418-425
    • /
    • 2013
  • The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/$Al_2$ ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption ($NH_3$-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/$Al_2$ ratio of ZSM-5 is about 50~80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of $437^{\circ}C$ and WHSV of $0.8h^{-1}$.