• Title/Summary/Keyword: Commercial catalyst

Search Result 287, Processing Time 0.026 seconds

Techno-economic evaluation of the 2,3-butanediol dehydration process using a hydroxyapatite-alumina catalyst

  • Song, Daesung;Yoon, Young-Gak;Lee, Chul-Jin
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2348-2354
    • /
    • 2018
  • We designed a conceptual model of the 2.3-BDO dehydration process using a hydroxyapatite-alumina catalyst and estimated its economic feasibility to predict the appropriate range of the purchase price of 2,3-BDO on commercial scale. The conceptual design and economic analysis can offer valuable information for the industrial application of 2,3-BDO because the most relevant studies have limitation in laboratory scale. Furthermore, the adequate range of 2,3-BDO price, in which the process has profitability, was investigated with the current market prices of 1,3-BD. The investigated price in terms of 2,3-BDO dehydration can pertain to estimation of the economic feasibility in 2,3-BDO production process.

Decomposition of HDPE over HZSM-5 Catalyst Modified with Si, P and Mg for Recycle of Waste Plastics (Si, P, Mg로 개질된 HZSM-5 촉매상에서 폐플라스틱(HDPE) 재활용을 위한 분해반응)

  • Yu, Eui-Yeon;Kim, Sang-Chai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.955-960
    • /
    • 2006
  • Catalytic decomposition over HZSM-5 was carried out in semi-batch reactor to recover gasoline from waste plastics(HDPE). To enhance the liquid yield with a molecule range of gasoline, the properties of catalytic decomposition were investigated over a commercial Si/ZSM-5 catalyst and HZSM-5 catalysts modified with P and Mg. Optimum loadings of P and Mg on HZSM-5 were 0.5 wt% and 2.0 wt%, respectively, based on conversion and liquid yield. $NH_3-TPD$ profile indicated that strong and weak acid sites totally decreased in P loading on HZSM-5 catalyst, strong acid sites moderately decreased and weak acid sites sharply reduced in Mg loading on HZSM-5 catalyst. In the case of Si/ZSM-5 catalyst, all acid sites almost disappeared, subsequently, catalytic decomposition significantly decreased, and little liquid product was produced. When HZSM-5 catalyst was modified with P and Mg, the carbon distribution of liquid product was shifted to lower carbon number and its all components was within a molecular range of gasoline($C_5-C_{11}$). Especially, over Mg(2.0 wt%)/ZSM-5 catalyst, 55.8% of liquid yield with 100% of a molecular range of gasoline, was obtained at $400^{\circ}C$, suggesting it as a promising catalyst for recycle of waste plastics.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Optimization of Preparation Conditions of Vanadium-Based Catalyst for Room Temperature Oxidation of Hydrogen Sulfide (황화수소 상온 산화를 위한 바나듐계 촉매의 제조 조건 최적화 연구)

  • Kang, Hyerin;Lee, Ye Hwan;Kim, Sung Chul;Chang, Soon Woong;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.326-331
    • /
    • 2021
  • In this study, the preparation conditions for a TiO2-based vanadium-based catalyst for oxidizing hydrogen sulfide at room temperature were optimized. Four types of commercial TiO2 were used as a catalyst support and the performance evaluation of hydrogen sulfide oxidation at room temperature of V/TiO2 by varying vanadium contents prepared using the impregnation method was performed. Among the types of TiO2 tested, it was confirmed that the catalyst with the vanadium content of 5% and based on TiO2(A) has the best hydrogen sulfide conversion rate of 58%. By comparing the physical and chemical properties of the catalyst, the specific surface area of the support and the species of dominant vanadium are the major factor in catalyst performance. In order to confirm the regeneration characteristics of the catalyst with reduced activity, heat treatment was performed at 400 ℃ for 2 h, and the amount of hydrogen sulfide oxidation decreased by 10% due to the partial deposition of sulfur in the regenerated catalyst, but it was confirmed that the initial performance was similar.

Remanufacturing of Commercial $V_2O_5-WO_3/TiO_2$ Catalyst used in the SCR Process of Incinerator (소각장 SCR 공정에서 사용되는 상용 $V_2O_5-WO_3/TiO_2$ 촉매의 재제조에 관한 연구)

  • Yoon, Goan-Gu;Yoo, Man-Sik;Lim, Jong-Sun;Kim, Tae-Won;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.970-977
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were remanufactured by washing with distilled water and arid solution and reimpregnation with catalytic active components($V_2O_5-WO_3$). The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. Under the experimental condition used in this study, the remanufactured catalysts activated by distilled water ultra sonic cleaning, the catalytic activity was recovered in the range of $66{\sim}93%$ of that of the fresh and the maximum activity was showed when the ultra sonic cleaning time was more than 3 minutes. The remanufactured catalysts by acid solution ultra sonic cleaning, the catalytic activity was recovered in the range of $81{\sim}97%$ of that of the fresh catalyst and the maximum catalytic activity was shooed when the pH of the acid solution was 5. The remanufactured catalysts by reimpregnation with $V_2O_5$ and $WO_3$, the catalytic activity was recovered in the range of $87{\sim}100%$ of that of the fresh catalyst. Maximum catalytic activity was showed when the $V_2O_5$ was reimpregnated more than 1.0 wt %. In this case, the catalytic activity was recovered 97% of that of the fresh catalyst especially at the $150^{\circ}C$ of the experimental temperature.

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Experimental Investigation on DeNOx Performance according to the Urea-SCR System Control at Various Operating Conditions for Diesel Engines (디젤엔진의 운전조건 변화 및 Urea-SCR 시스템 제어에 따른 DeNOx 성능에 대한 실험적 연구)

  • Han, Jung-Won;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • Recently, as the current and future emission regulations go stringent, the research of NOx reduction has become a subject of increasing interest and attention in diesel engine. Selective Catalytic Reduction (SCR) is one of the effective technology to reduce NOx emission from diesel engine. Especially, Urea-SCR that uses urea as a reductant is becoming increasingly popular as a cost effective way of reducing NOx emissions from heavy duty vehicles. In this research, we designed urea injector and DCU (Dosing Control Unit) specially developed for controlling the Urea-SCR process onboard vehicles. As passenger and commercial diesel engine experiment, we grasped characteristics of NOx emission and SCR catalyst temperature level in advance. As a result, highest NOx emission level was shown in condition of low engine speed and high load. On the other hand, SCR catalyst temperature was highest at high engine speed and load. On the basis of these result, we conducted the NOx reduction test at steady engine operating conditions using the urea injector and DCU. It was shown that 74% NOx conversion efficiency on the average and 97% NOx conversion efficiency was obtained at high SCR catalyst temperature.

Comparison of efficiencies of converting urea solution to ammonia depending on active catalyst metals on TiO2 (타이타니아 담지 활성촉매에 따른 요소 수용액의 암모니아 전환 효율 비교)

  • Lee, Myung Sig;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.163-172
    • /
    • 2018
  • In this study, selective catalytic reductions (SCR) of NO commercial catalysts were used to investigate the effect of ammonia gasification from urea solution. The effects of catalytic chemical composition on the reaction temperature and space velocity were studied. $V_2O_5/TiO_2$ catalysts, which are widely used as SCR catalysts for removal of nitrogen oxides, have better ammonia formation compare to $TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The $TiO_2$ catalyst not supporting the active metal was not affected by the space velocity as compared with the catalyst supporting $V_2O_5$ or $WO_3-V_2O_5$. The active metal supported catalysts decreased in the ammonia formation as the space velocity increased.

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst (니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구)

  • Seong, Minjun;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.