• Title/Summary/Keyword: Commercial Fire

Search Result 176, Processing Time 0.023 seconds

The Method of Evaluating The Potential for Conversion Legal Problems with Conversion And Basic Capacity of Vacant Onces in Tokyo

  • Sato, Kouichi;Matsumura, Shuichi;Namiki, Kenji
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.301-306
    • /
    • 2002
  • In Japan, the vacancy rates of office buildings have been at high in big cities since 1992. This problem is especially acute in Tokyo, where it is estimated that over 2.27 million square meters of office floor area will be oversupplied in 2003: big urban redevelopment projects will be completed in 2003. Under these circumstances, International Cooperative Research and Development on Sustainable Urban Management by Conversion of Buildings, called “SUMCOB”, has been carried out. This research aims to regenerate urban areas by converting redundant offices into flats, although instances of conversion are still very few in Japan. This paper introduces part of current results by SUMCOB, and discusses legal problems with conversion and basic capacity of vacant offices in Tokyo. It has been confirmed that there are no constraints concerned with Real Estate Registration Law (although it requires the change of the registration after conversion). and City Planning Law. However, some criteria are incompatible with Building Standard Law and Fire Service Law if the use of the building is changed from offices to flats. Typical incompatibility between offices and flats is lightening. If the buildings do not satisfy criteria for flats, the cost of renovation works for conversion will increase. To examine the basic capacity of vacant office buildings for conversion, field surveys in Tokyo have carried out at three areas: Kodenmacho (Chuo-ku), Toranomon (Minato-ku), and Iwamonocho (Chiyoda-ku). They are typical office areas that are included in center core of Tokyo. In Chuo-ku, the oldest commercial area in Tokyo, textile merchants have been located their headquarters. In Minato-ku, many rental office buildings have been located and several large scale redevelopments are advancing. Chiyoda-ku includes Marunouchi area, which is the prime office area in Japan. Thirty percent of the buildings in survey areas suffer from over twenty percent vacant floor rate, and fifty five percent were constructed before 1990. Especially most of buildings over forty percent vacant floor rate were constructed in 1980s. Vacant office problems haven't been seen in old buildings in Tokyo yet. The number of dwelling units made from office space will influence the conversion scheme. Seventy percent of the office buildings in survey areas have floor area of less than two hundred square meters. If they have been subdivided into two bedrooms type or three bedrooms type, the number of dwelling units in a floor would be less than three. The difficulty of conversion planning derives from frontage size, depth size, and their proportion. The five categories are proposed to grasp actual requirements for converting offices into flats.

  • PDF

Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis (유한요소 신뢰성 해석을 통한 액체저장탱크의 지진 취약도 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.718-725
    • /
    • 2017
  • A liquid storage tank is one of the most important structures in industrial complexes dealing with chemicals, and its structural damage due to an earthquake may cause a disastrous event such as the leakage of hazardous materials, fire, and explosion. It is thus essential to assess the seismic fragility of liquid storage tanks and prepare for seismic events in advance. When a liquid storage tank is oscillated by a seismic load, the hydrodynamic pressure caused by the liquid-structure interaction increases the stress and causes structural damage to the tank. Meanwhile, the seismic fragility of the structure can be estimated by considering the various sources of uncertainty and calculating the failure probabilities in a given limiting state. To accurately evaluate the seismic fragility of liquid storage tanks, a sophisticated finite element analysis is required during their reliability analysis. Therefore, in this study, FERUM-ABAQUS, a recently-developed computational platform integrated with commercial finite element and reliability analysis software packages, is introduced to perform the finite element reliability analysis and calculate the failure probability of a liquid storage tank subjected to a seismic load. FERUM-ABAUS allows for automatic data exchange between these two software packages and for the efficient seismic fragility assessment of a structure. Using this computational platform, the seismic fragility curve of a liquid storage tank is successfully obtained.

A Study on How to Lower the Grounding Impedance by Needles-typed Grounding Rods (접지침봉에 의한 접지임피던스를 낮추는 방안 연구)

  • Park, Sung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • Purpose: One of the methods for preventing disasters such as fire, explosion, and electric shock caused by electricity is to perform grounding. In case of the grounding current includes a frequency component having a high, it is preferable to measure grounding impedance rather than grounding resistance. This study proposes countermeasures to reduce grounding impedance to suppress an ground potential rise due to a grounding current having a frequency component of several kHz or more. Method: General grounding rods and needles-typed grounding rods were buried in the ground, and grounding resistance and grounding impedance were measured, respectively. The characteristics of grounding impedance according to frequency were identified. Result: There was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range lower than 62.5kHz, there was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range higher than 62.5kHz, the grounding impedance of needles-typed grounding rods was reduced by about 15% than the grounding impedance of general grounding rods. Conclusion: In the commercial frequency domain, it is effective to connect several grounding rods (common grounding) to lower the grounding resistance value. In the frequency domain of several kHz or more, it is expected that needles-typed grounding rods can effectively reduce the ground potential rise due to the grounding current.

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition (전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구)

  • Geon-Joo Jeong;Tae-Yoo Kim;Seung-Boo Jung;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2023
  • Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.