• 제목/요약/키워드: Commercial CFD Code

검색결과 461건 처리시간 0.02초

확장챔버를 적용한 방호터널 내부의 CFD 해석 기반 폭발압력 평가 (CFD-Based Overpressure Evaluation Inside Expansion Chamber-Applied Protective Tunnels Subjected to Detonation of High Explosives)

  • 신진원;방승기
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.25-34
    • /
    • 2023
  • This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.

전산 유체 역학을 이용한 선박 방향타 주변의 항력 및 양력 계수에 대한 수치 시뮬레이션 (Numerical Simulation on Drag and Lift Coefficient around Ship Rudder using Computational Fluid Dynamics)

  • 구본국
    • 융합신호처리학회논문지
    • /
    • 제24권2호
    • /
    • pp.97-102
    • /
    • 2023
  • 방향타는 조선 분야에서 중요한 역할을 하기 때문에 방향타의 유체역학적 특성을 조사하기 위해 수치 시뮬레이션이 수행되었다. 유체역학적 힘과 같은 일부 값은 예인 탱크에서 쉽게 측정할 수 있지만, 실험을 통해 압력 분포, 속도 분포, 와류 발생과 같은 유동장에 대한 자세한 정보를 얻기는 어렵다. 본 연구에서는 전산유체역학(CFD)을 이용하여 방향타에 작용하는 유체역학 계수와 레이놀즈수가 미치는 영향을 연구하였다. 상용 전산유체역학 프로그램 Ansys Fluent를 이용하여 방향타 주위의 유동 특성을 연구하였고, 이때 k-epsilon 난류 모델이 사용되었다. 먼저 CFD 상용코드를 이용하여 KCS 방향타의 받음각에 따른 항력계수와 양력계수를 구하였다. 둘째, 동일한 조건에서 2차원 양력계수와 항력계수를 3차원 계수와 비교되었다. 셋째, 레이놀즈수가 유체역학적 힘에 미치는 영향이 연구되었다.

반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석 (CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber)

  • 윤준원
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

CFD 해석을 통한 냉장고용 응축기 전열성능 연구 (CFD ANALYSIS OF HEAT TRANSFER PERFORMANCE OF A REFRIGERATOR CONDENSER)

  • 유성수;황도연;이명수;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.303-309
    • /
    • 2009
  • In this study, the heat transfer and flow field of condenser used on Kim-chi refrigerator is analysed with numerical method. Main objective is to present the base data for designing new condenser model with improvement of heat transfer performance. For CFD analysis, a commercial code, STAR-CCM+ was used. The water was used for the inner working fluid and the air was used for the outer fluid. The condenser type used in this study is a flat plate fin-and-tube heat exchanger. As factors for performance analysis, the effect of condenser geometry and air velocity was investigated. As a result, it has been observed that there is a suitable fin pitch with which heat transfer performance of condenser is maximized.

  • PDF

CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구 (A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD)

  • 모장오;남구만;김유택;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

원심다익송풍기의 미끄럼 계수에 대한 연구 (Study on The Slip Factor Model for Multi-Blades Centrifugal Fan)

  • 구오엔민;김광용;서성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF

Flow Characteristics of Polluted Air in a Rectangular Tunnel using PIV and CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.609-617
    • /
    • 2012
  • The flow characteristics of polluted air are analysed by comparing the results obtained from PIV(Particle Image Velocimetry) experiment and CFD(Computational Fluid Dynamics) commercial code. In order to simulate the polluted air flow, the olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}m^2/s$. The investigation has done in the range of Reynolds numbers of 870, 1730 and 2890 due to the inlet flow velocities of 0.3, 0.6, and 1.0 m/s, respectively. The average velocity and the pressure distributions are comparatively discussed with respect to the three different Reynolds numbers. The results show that the outlet flow rates at three different Reynolds numbers are equivalent of 165 to 167 percent of the inlet ones. The pressure drop occurs in the model closed at both end sides and the highest pressures at each Reynolds number are positioned at the top of the tunnel between the inlet and outlet.

슬러지 유동층 소각로의 프리보드 내 가스 혼합 및 반응 특성에 대한 실험 및 해석적 연구 (Experimental and Numerical Study on the Gas Mixing and Reaction in the Freeboard of a Fluidized Bed Incinerator for Sludge Treatment)

  • 김영민;신동훈;황승식
    • 한국연소학회지
    • /
    • 제16권4호
    • /
    • pp.8-15
    • /
    • 2011
  • The present study investigates the combustion phenomena in a sludge incinerator using experimental and numerical method. The temperature and gas concentration were measured at 33 points during operation of the incinerator in order to assess the mixing and combustion characteristics. Numerical simulation was also carried out using a commercial CFD code. Simplified inlet conditions were introduced in oder to predict the bulk solid combustion and the diffusion of the volatile matter released by pyrolysis of sludge. The experimental results showed that the combustion process is extremely inhomogeneous. Large variations were observed in the temperature and gas concentrations in the freeboard of the incinerator due to poor mixing performance between the air and the combustibles, which is caused by massive and bulk generation of volatile matter by fast pyrolysis of sludge particles. The boundary condition of the CFD simulation was found effective in predicting the poor mixing and combustion performance of the reactor.

CFD에 의한 와류방지장치(AVD)가 설치된 흡수정내 펌프의 성능평가에 관한 연구 (Study on Performance Analysis of Pump within Sump Model with AVD installation by CFD)

  • 최종웅;박노석;김성수;박상수;이영호
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.463-469
    • /
    • 2012
  • The efficiency of the flow mixed pump installed within the bell-mouth in the sump is reduced by the flow characteristics of around intakes. Strong submerged vorticies can be successfully suppressed by installing an AVD(anti-submerged vortex device) on the bottom of pump intake channel just below the bell-mouth. Sump model with AVD device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the efficiency of the pump with the AVD installation in the pump station accurately.

CFD를 이용한 오리피스 유량계의 차압계산 (Calculations of Pressure Difference in Orifice Flowmeter using CFD)

  • 김홍민;김광용;허재영;하영철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.400-403
    • /
    • 2001
  • In this study, commercial CFD code, i.e, CFX-4.3 is used to analyze the flow field and to calculate pressure differences in an orifice flowmeter. Four numerical schemes and five turbulence models are tested. Hybrid scheme and Reynolds stress model show the best performance. Chosen scheme and turbulence model are applied to predict pressure differences through the orifice for the diameter ratios, 0.3, 0.5, and 0.7. And, the results are compared with the experimental data. The results show that the calculation error is inversely proportional to the diameter ratio, and is proportional to the mass flow rate.

  • PDF