• Title/Summary/Keyword: Commercial Architecture

Search Result 738, Processing Time 0.03 seconds

An Analysis and Design of Efficient Community Routing Policy for Global Research Network (글로벌연구망을 위한 효율적인 커뮤니티 라우팅 정책의 분석 및 설계)

  • Jang, Hyun-Hee;Park, Jae-Bok;Koh, Kwang-Shin;Kim, Seung-Hae;Cho, Gi-Hwan
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • A routing policy based on BGP community routing permits to select a specific route for particular network by making use of user-defined routing policies. Especially, community based routing policy is recently getting a great concern to enhance overall performance in the global research networks which are generally inter-connected large number of different characterized networks. In this paper, we analyze the community routing which has been applied in existing global research networks in the network performance point of view, and catch hold of problems caused by the routing performance in a new global research network. Then, we suggest an effective community routing policy model along with an interconnection architecture of research networks, in order to make correct some wrong routings and resolve an asymmetric routing problem, for a new global research network. Our work is expected to be utilized as an enabling base technology to improve the network performance of future global research networks as well as commercial networks.

  • PDF

Development of Advanced Rendering Library for CAD/CAM Moduler (CAD/CAM 모델러용 고급 렌더링 라이브러리의 개발)

  • Choe, Hun-Gyu;Lee, Tae-Hyeon;Han, Hun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.4
    • /
    • pp.385-394
    • /
    • 1999
  • 제품을 설계하는 디자이너나 엔지니어는 많은 시간과 노력을 들이지 않고서 그들이 설계한 3차원 제품 모델에 대한 사실적인 이미지를 원한다. 디자인 프로세스의 초기인 개념 설계에서부터 설계검증, 그리고 가공 과정에서 사실적인 이미지가 매우 유용하므로, 대부분의 주요 CAD 제작사는 그들의 CAD 소프트웨어에 고급 렌더링 기능을 추가하고 있다. 상용의 CAD/CAM 모델러에서는 NURB 곡면을 기초로 모델링을 수행하므로, NURB 곡면을 렌더링할 수 있는 패키지가 필요하다. VIF(Visual InterFace) 렌더링 라이브러리는 A-buffer 방식과 Ray tracing 방식의 두 가지 고급 렌더링 모드를 제공한다. 다각형은 물론 NURB 곡면을 입력으로 받아 사용자가 설정한 표면의 각종 계수, 원하는 view와 설정된 광원에 따라 이미지를 만들고 다양한 형태로 출력시킬 수 있는 다양한 기능을 제공한다. 본 논문에서는 VIF 렌더링 라이브러리에 대한 구조와 기능별로 분류된 함수에 대하여 설명하며, 실제로 CAD/CAM 시스템과 통합되어 구상설계에서부터 3차원 설계 모델링에 이르기까지의 제조공정에서 설계검증 툴로써 어떻게 활용되고 있는가에 대하여 기술한다.Abstract Engineers and industrial designers want to produce a realistic-looking images of a 3D model without spending a lot of time and money. Photo-realistic images are so useful from the conceptual design, through its verification, to the machining, that most major CAD venders offer built-in as well as add-on photo-realistic rendering capability to their core CAD software. Since 3D model is consists of a set of NURB surfaces in commercial CAD packages, we need a renderer which handles NURB surface as well as other primitives.A new rendering library called VIF (Visual InterFace) provides two photo-realistic rendering modes: A-buffer and Ray tracing. As an input data it takes NURB surfaces as well as polygonal data and produces images in accordance with the surface parameters, view and lights set by user and outputs image with different formats. This paper describes the overall architecture of VIF and its library functions classified by their functionalities, and discusses how VIF is used as a graphical verification tool in manufacturing processes from the conceptual design to 3D modeling.

Hull-Form Development of a Twin-Skeg Large Ro-Pax Ferry (트윈스케그 적용 대형 로팩스선의 선형개발)

  • Lee, Hwa Joon;Jang, Hag-Soo;Hong, Chun-Beom;Ahn, Sung-Mok;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.491-497
    • /
    • 2012
  • A hull-form for a 32,000G/T class Ro-Pax ferry has developed in accordance with a need of ferry operators to reduce fuel oil consumption(FOC) due to the drastic increase in oil prices recently and strengthening of environmental rules and regulations such as CO2 emission. A twin-skeg type is applied as the hull-form in lieu of an open-shaft type in order to improve propulsion performance. In order to achieve this object, flow control devices are installed to reduce a propeller induced vibration which is a main reason to obstruct the application of twin-skeg type passenger vessels owing to an uncomfortable vibration level. Numerical simulation by using an in-house code and a commercial code (Fluent) has performed to find out an optimum design of the flow control devices and to check an improvement in cavity volume. Model tests in Samsung Ship Model Basin are carried out to evaluate propulsion performance with the developed twin-skeg type hull and a reference hull of open-shaft type. In conclusion, it is shown that the twin-skeg type hull is better than the open-shaft in FOC by around 7% and in cavity volume by 20% as well.

Development of Simulator for Designing Unidirectional AGV Systems (일방향 AGV 시스템 설계를 위한 시뮬레이터 개발)

  • Lee, Gyeong-Jae;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.133-142
    • /
    • 2008
  • AGV systems are widely used to increase the flexibility and the efficiency of the material handling systems. AGV systems are one of critical factors which determine the overall performance of the manufacturing systems. To this end, the optimal design for AGV systems is essential. Commercial simulation software is often used as an analysis tool during the design of AGV systems, however a series of procedures are desirable to simplify the analysis processes. In this paper, we present and develop the architecture for unidirectional AGV systems simulator which is able to consider approximate optimal unidirectional flow path and various operational parameters. The designed AGV systems simulator is based on JAVA, and it is developed to support designing approximate optimal unidirectional network by using Tabu search method. In addition, it enables users to design and evaluate AGV systems and to analyze alternative solutions easily. Simulation engine is consists of layout designer, AGV operation plan designer, and integrated AGVS layout designer. Users enter their system design/operation information into input window, then the entered information is automatically utilized for modeling and simulating AGV systems in simulation engine. By this series of procedures, users can get the feed back quickly.

  • PDF

A Study on the Enhancement of Network Survivability through Smart Sensor Technologies Convergence (스마트 센서 기술 융합을 통한 망 생존성 강화에 관한 연구)

  • Yang, Jung-Mo;Kim, Jeong-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.269-276
    • /
    • 2016
  • Public Safty-LTE(Long Term Evolution) is being deployed in the direction of reducing cost by using both of municipal network and commercial network. However, LTE Network is difficult to ensure the survivability during the information communication infrastructure failures. In addition, it is vulnerable in communication coverage of inside buildings and underground. In this study, we propose to implement effectively the network survivability technique through the convergence to the proven technology. As the advent of the IoT Age, smart sensors which are embedded in the environment and the things will be able to provide a useful infrastructure for ensuring the network survivability. Based on the feature of the smart sensor, we designed the sink node architecture to guarantee the network survivability in disaster situation through the convergence of the small cell technology and extension of wireless network coverage technology. The computing power inherent in the environment is a valuable resource that can be utilized in the disaster situation.

Global Unmanned Aerial Vehicle Utilization Research Trends

  • Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun;Kim, Dong-Pil
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • The rapid development of technologies in unmanned aerial vehicles (UAVs) has led to their use in various areas. UAVs are mainly used for commercial purposes, but their utilization is increasingly important in other areas because their operation cost is less than satellites and aerial imaging. The utilization of UAVs in the environment/ecology area is relatively new. Therefore, identifying the trends of UAV-related spatial information is significant in basic research for UAV utilization. This study quantitatively identified domestic and international research trends related to UAV utilization and analyzed research areas. An attempt was also made to identify upcoming UAV-related topics in the environment/ecology research field using text mining to analyze the bibliographic information of global research literature. Domestic UAV-related studies were classified into seven clusters where basic research on "UAV technology/industry trends" was abundant, and studies on data collection and analysis through UAV remote sensing technology have increased since 2015. Eight clusters were identified for international studies where the most active research area international was "remote sensing technology/data analysis". In addition, Canopy, Classification, Forest, Leaf Area Index, Normalized Difference Vegetation Index, Temperature, Tree, and Atmosphere appeared as the main keywords related to environment and ecology. The appearance frequencies and association strengths were high because the advancement in UAV optical sensor technology and the rapid development of image processing technology enabled the acquisition of data that could not be obtained from existing spatial information. They are recognized as future research topics as related domestic studies have begun corresponding to international research.

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures (극후물재 용접부 내부잔류응력 측정기술 및 특성)

  • Park, Jeong-ung;An, Gyu-baek;Woo, Wanchuck
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

Structural Safety of Nozzle Plate using Simulation (시뮬레이션을 이용한 노즐플레이트의 구조안전성)

  • Jung, Jong Yun;Park, Heesung;Kim, Joon-Seob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.186-193
    • /
    • 2018
  • Modern manufacturing industries is to produce both precise and robust mechanical parts without failure while they are in service. In order to prevent a part failure for its lifetime, a mechanical design for a part should be examined on a basis of mechanical simulation. A nozzle plate, being a key part in steam engines, changes flow directions of steam in a turbine used in power plant. This paper is to the design and test for part safety and durability. Currently, nozzle plates are fabricated by welding nozzles to their plates. Welding causes some defects on the used materials while they are being manufactured. Another major defect is un-even pitches between welded nozzles. Welding causes phase changes because of high melting temperature of metal. This leads to decay on the welding spots, which weakens their structural strength and then, may lead to early damages on mechanical structures. This research proposes assembly-typed nozzle plate without welding. From the beginning, nozzle and plate are designed for insertion-typed assembly. Nozzle head and foot are designed in accordance with the grooves on outer ring and inner ring of a plate to make mating surfaces. Then the nozzle plate should be proved for structural and fatigue safety before they are put in manufacturing. This research adopts commercial softwares for modeling and mechanical simulation. The test result shows that the design with smaller mating area and deeper insertion produces higher safety in terms of structure and durability. From the conclusion, this paper proposes the assembly-typed nozzle plate to replace the welding typed.

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.