• 제목/요약/키워드: Comment Analysis

검색결과 125건 처리시간 0.023초

Representing Topic-Comment Structures in Chinese

  • Pan, Haihua;Hu, Jianhua
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2002년도 Language, Information, and Computation Proceedings of The 16th Pacific Asia Conference
    • /
    • pp.382-390
    • /
    • 2002
  • Shi (2000) claims that topics must be related to a syntactic position in the comment, thus denying the existence of dangling topics in Chinese. Under Shi's analysis, the dangling topic sentences in Chinese are not topic-comment but subject-predicate sentences. However, Shi's arguments are not without problems. In this paper we argue that topics in Chinese can be licensed not only by a syntactic gap but also by a semantic gap/variable without syntactic realization. Under our analysis, all the dangling topics discussed in Shi (2000) are, in fact, not subjects but topics licensed by a semantic gap/variable that can turn the relevant comment into an open predicate, thus licensing dangling topics and deriving well-formed topic-comment constructions. Our analysis fares better than Shi's in not only unifying the licensing mechanism of a topic to an open predicate without considering how the open predicate is derived, but also unifying the treatment of normal and dangling topics in Chinese,

  • PDF

A study on real-time internet comment system through sentiment analysis and deep learning application

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • 제11권2호
    • /
    • pp.3-14
    • /
    • 2023
  • This paper proposes a big data sentiment analysis method and deep learning implementation method to provide a webtoon comment analysis web page for convenient comment confirmation and feedback of webtoon writers for the development of the cartoon industry in the video animation field. In order to solve the difficulty of automatic analysis due to the nature of Internet comments and provide various sentiment analysis information, LSTM(Long Short-Term Memory) algorithm, ranking algorithm, and word2vec algorithm are applied in parallel, and actual popular works are used to verify the validity. If the analysis method of this paper is used, it is easy to expand to other domestic and overseas platforms, and it is expected that it can be used in various video animation content fields, not limited to the webtoon field

  • PDF

A study on the impact of homestay sharing platform on guests' online comment willingness

  • Zou, Ji-Kai;Liang, Teng-Yue;Dong, Cui
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.321-331
    • /
    • 2020
  • 본 논문의 연구 목적은 공유숙박 비즈니스 바탕으로 숙박 플랫폼이 세입자의 온라인 리뷰 의향에 미치는 영향을 연구하는 것이다. 기존 숙박예약 모델보다 공유숙박 중 숙박 플랫품, 집주인, 세입자 간을 공유하는 독립성이 더 명확하다. 공유숙박 플랫폼은 집주인과 세입자간의 오프라인 숙박서비스를 완료하고 거래를 실현할 수 있도록 다양한 지원 서비스를 제공하는 것은 물론, 공유숙박 플랫폼은 세입자가 집주인에게 객관적이고 적극적으로 평가하도록 장려하는 특정 조치를 파악해야 한다. 공유숙박에 대한 신용 생태를 더 잘 확립할 수 있도록 필요하다. 본 논문에서는 공유숙박 플랫폼을 사용해본적 있는 소비자들을 대상으로, 2주간의 설문 조사를 하고 SPSS24.0 프로그램을 사용하여 데이터가 분석되었다. 이 논문의 연구결과는: (1) 플랫폼 리뷰 기능의 사용 용이성, 세입자의 만족도 및 플랫폼 리뷰 인센티브가 세입자의 온라인 리뷰 의향에 긍정적인 영향을 미친다. (2) 플랫폼의 신용 메커니즘은 세입자의 만족도가 온라인 리뷰 의향에 영향을 미치는 과정에서 긍정적인 영향을 미친다.

회사 페이스북 메시지의 심리적 거리와 메시지 유형이 구전에 미치는 영향에 대한 탐색적 연구 (An Exploratory Study on the Effects of Psychological Distance and Message Type on Word-of-Mouth in Firm's Facebook)

  • 이성원
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권2호
    • /
    • pp.71-94
    • /
    • 2020
  • Purpose With the development of Social Network Service(SNS) and mobile devices, many companies have been using the Facebook as a Word-of-Mouth(WOM) channel. This study examines the effects of psychological distance and message type on WOM using the Facebook's real messages. And the moderating effect of the message type on the relationship between psychological distance and WOM was also analyzed. Design/methodology/approach A content analysis was used as a research method. A total 7,483 messages were collected from 50 companies' Facebook Fanpage (based on the ranking of socialbakers.com) and content analysis was conducted using human coding. As the influencing variables, the message type and psychological distance and the number of 'Likes', 'Share', and 'Comment' were used as the dependent variable. The R3.4.4 was used to perform descriptive statistics, cross-tab analysis, and analysis of variance(ANOVA). Findings First, a larger proportion of Facebook messages have close psychological distance for all message types(information, advertisement, event, and customer relationship). Second, 'Like' and 'Comment' number were significantly higher in messages of close psychological distance. Third, the effects of psychological distance on 'Like', 'Share', and 'Comment' number were different according to message type. However, 'advertisement' message type had significantly more numbers for all WOMs('Like', 'Share', and 'Comment') in messages with close psychological distance.

정보 중립성 확보를 위한 인터넷 뉴스 댓글의 정치성향 분석 (Political Information Filtering on Online News Comment)

  • 최혜봉;김재홍;이지현;이민구
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.575-582
    • /
    • 2020
  • 본 연구는 인터넷 뉴스 댓글 빅데이터 분석을 통해 뉴스 댓글 사용자의 정치적 성향을 추정하는 방법을 제안한다. 인터넷 뉴스 댓글과 작성자의 정치 성향을 함께 제공하여 디지털 매체를 통한 정보 전달의 객관성과 중립성을 확보하고자 한다. 250만 건 이상의 인터넷 뉴스 댓글의 특성을 분석하고 사용자의 정치적 성향을 효과적으로 추정하기 위한 특징을 추출한다. 어휘사전 기반 알고리즘과 유사도 기반 알고리즘을 제안하고 실험을 통해 두 알고리즘을 비교하고 효과를 검증한다.

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

인터넷 게시물의 댓글 분석 및 시각화 (Analysis and Visualization for Comment Messages of Internet Posts)

  • 이윤정;지정훈;우균;조환규
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.45-56
    • /
    • 2009
  • 오늘날 인터넷 사용자들은 블로그나 뉴스, 인터넷 게시판 등의 매체에서 댓글을 통해 다른 사람의 의견을 살피고 자신의 의견을 나타내고 있다. 그러나 현재 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 사용자가 원하는 내용의 댓글을 검색하거나 살펴보는 것은 힘든 일이다. 또한 댓글 사용자가 증가함에 따라 스팸 댓글이나 악플 등이 사회 문제가 되기도 한다. 본 논문에서는 다음 아고라(Daum AGORA) 웹 블로그의 게시글과 댓글을 통계적으로 분석하고 유사도를 기반으로 클러스터링하는 시스템을 제안한다. 본 시스템은 클러스터링 결과를 시각화하여 간단한 스크린 뷰(screen view)로 보여준다. 또한, 본 시스템은 생물정보학에서 잘 알려진 정렬 기법인 Needleman-Wunsch 알고리즘을 이용해 스팸 댓글을 필터링한다.

정치 도메인에서 신조어휘의 효과적인 추출 및 의미 분석에 대한 연구 (Study on Effective Extraction of New Coined Vocabulary from Political Domain Article and News Comment)

  • 이지현;김재홍;조예성;이민구;최혜봉
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.149-156
    • /
    • 2021
  • 정치적 사안에 대한 대중의 의견과 인식을 객관적으로 이해하기 위한 방법으로 텍스트 마이닝을 통한 빅데이터 분석을 수행할 수 있다. 기존 어휘 사전에 기반한 텍스트 마이닝 알고리즘은 신조어와 같이 사전에 수록되지 않은 어휘를 분석하는데 한계가 나타난다. SNS를 통해 나타나는 사용자들의 의견은 많은 경우 신조어와 비속어를 포함하는데, 이러한 어휘들을 효과적으로 분석하지 못한다면 정확한 대중의 인식과 의견을 파악하기 어렵게 된다. 본 논문은 정치 섹션의 뉴스 댓글로부터 정치적 의미성을 지니는 신조어와 비속어를 효과적으로 추출하는 방법을 제안하고, 추출한 신조어휘들의 의미와 맥락을 이해하기 위한 다양한 방법을 제시하였음.

RESEARCH ON SENTIMENT ANALYSIS METHOD BASED ON WEIBO COMMENTS

  • Li, Zhong-Shi;He, Lin;Guo, Wei-Jie;Jin, Zhe-Zhi
    • East Asian mathematical journal
    • /
    • 제37권5호
    • /
    • pp.599-612
    • /
    • 2021
  • In China, Weibo is one of the social platforms with more users. It has the characteristics of fast information transmission and wide coverage. People can comment on a certain event on Weibo to express their emotions and attitudes. Judging the emotional tendency of users' comments is not only beneficial to the monitoring of the management department, but also has very high application value for rumor suppression, public opinion guidance, and marketing. This paper proposes a two-input Adaboost model based on TextCNN and BiLSTM. Use the TextCNN model that can perform local feature extraction and the BiLSTM model that can perform global feature extraction to process comment data in parallel. Finally, the classification results of the two models are fused through the improved Adaboost algorithm to improve the accuracy of text classification.