• Title/Summary/Keyword: Command Center

Search Result 237, Processing Time 0.02 seconds

Captive Flight Test System Configuration and Verification for Multi-mode Guidance Missile System (복합유도방식이 적용된 유도탄의 탑재비행시험(CFT) 시스템 구성 및 검증)

  • Park, Inchul;Heo, Wonyoung;Lee, Yongho;Jeong, Seyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.606-612
    • /
    • 2016
  • A Captive Flight Test(CFT) is used to verify the performance of missile component such as seeker and guiding algorithm of missile. Recently most of surface to air missile adapts multi-mode guidance method which include command guidance and active/passive guidance. A CFT system for missile system adapting multi-mode guidance method consists of pod equipment, command transmitting system and measuring system. In this paper, we proposed CFT system and testing method for missile which adapt multi-mode guidance, and system integration procedure by using distributed missile system integration method and procedure. The proposed CFT system and system integration method was applied to CFT of surface to air missile, and brought successful result.

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

A Study on the Roles of Local Disaster Response Organizations (지역 재난현장 대응조직의 역할에 관한 연구)

  • Kwon, Gun-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • The purpose of this study is to compare and analyze the organizations for responses in disaster fields to cope with large-scaled disasters including Emergency Management Agency, Emergency Response Unit, Emergency Support Center, and Field Command Center (Field Command Office). According to the results of the analysis, the problems of the organizations for responses in local disaster fields are; 1) the scopes of roles among the organizations for responses in disaster fields are ambiguous, 2) the structures of the organizations for responses in disasters are different each other, 3) the integrated management functions among the organizations for responses in disasters are overlapped, and 4) the one who assumes the integrated command is not defined. In order to improve the problems, first, the range of working of each organization for responses in local disaster fields should be definitely established and an agreement in services among the organizations should be settled in advance. Second, similar designs in the structure among the organizations for responses in disasters are necessary for amicable communication. Third, the works for integration and management for each organization for responses should be apportioned. Fourth, the organization in charge and the one who assumes the integrated command for each type of disasters should be appointed in advance for rapid decision-making.

Analysis of Improving Requirement on Military Security Regulations for Future Command Control System (미래 지휘통제체계를 위한 보안 규정 개선 요구사항 분석)

  • Kang, Jiwon;Moon, Jae Woong;Lee, Sang Hoon
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2020
  • The command control system, like the human brain and nervous system, is a linker that connects the Precision Guided Missile(PGR) in information surveillance and reconnaissance (ISR) and is the center of combat power. In establishing the future command and control system, the ROK military should consider not only technical but also institutional issues. The US Department of Defense establishes security policies, refines them, and organizes them into architectural documents prior to the development of the command and control system. This study examines the security architecture applied to the US military command control system and analyzes the current ROK military-related policies (regulations) to identify security requirements for the future control system. By grouping the identified security requirements, this study identifies and presents field-specific enhancements to existing security regulations.

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

QPSK Modem Design of Satellite Air-defence Warning System (위성 전군방공경보체계 QPSK 모뎀 설계)

  • Kim, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Satellite Air-defence Warning System receives the aircraft/ballistic track information and air defense control command obtained from Master Control & Reporting Center (MCRC) and Air Missile Defence Cell (AMD Cell) Systems. It consists of terminal and control system to propagate track information and air defense control command control via the military satellite communications. In this paper, there were described track information, air defense control command, the frame structure of modem to transmit a voice information and modulation/demodulator design, network synchronization methods via the satellite network.

Real-Time Surface Interpolator for Multiple Surface Machining Based on a Surface Cycle Command (복합 사이클 코드 지령 방식의 다중곡면 가공을 위한 실시간 곡면 보간기)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.97-107
    • /
    • 2007
  • The present CNC machining system if without any CAM software has been limited to 2D or 2.5D plane cut using lines, arcs and curves. If the CNC is equipped with a surface interpolation module and a surface reorganizing module inside it, we can easily try 3D surface machining without aid of CAM software. The existing NURBS surface interpolator is simple and direct to use for a unit surface. However, it enables only machining of each reference surface individually even when machining a simple composite surface. In this paper, we propose a method which can unify and reorganize various reference surfaces with a newly defined NURBS surface cycle command: a multi-repetitive cycle command such as in a CNC turning center. We also introduce a reorganizing rule for reference surfaces using NURBS properties. The usefulness of the proposed method is verified through computer simulation.

Dynamic Simulation of Modifiable Walking Pattern Generation to Handle Infeasible Navigational Commands for Humanoid Robots

  • Hong, Young-Dae;Lee, Ki-Baek;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.751-758
    • /
    • 2016
  • The modifiable walking pattern generation (MWPG) algorithm can handle dynamic walking commands by changing the walking period, step length, and direction independently. When an infeasible command is given, the algorithm changes the command to a feasible one. After the feasibility of the navigational command is checked, it is translated into the desired center of mass (CM) state. To achieve the desired CM state, a reference CM trajectory is generated using predefined zero moment point (ZMP) functions. Based on the proposed algorithm, various complex walking patterns were generated, including backward and sideways walking. The effectiveness of the patterns was verified in dynamic simulations using the Webots simulator.

Real-Time Travelling Control of Mobile Robot by Conversation Function Based on Voice Command (대화기능에 의한 모바일로봇의 실시간 주행제어)

  • Shim, Byoung-Kyun;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.127-132
    • /
    • 2013
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.