Browse > Article
http://dx.doi.org/10.5370/JEET.2016.11.3.751

Dynamic Simulation of Modifiable Walking Pattern Generation to Handle Infeasible Navigational Commands for Humanoid Robots  

Hong, Young-Dae (Dept. of Electrical and Computer Engineering, Ajou University)
Lee, Ki-Baek (Dept. of Electrical Engineering, Kwangwoon University)
Lee, Bumjoo (Dept. of Electrical Engineering, Myongji University)
Publication Information
Journal of Electrical Engineering and Technology / v.11, no.3, 2016 , pp. 751-758 More about this Journal
Abstract
The modifiable walking pattern generation (MWPG) algorithm can handle dynamic walking commands by changing the walking period, step length, and direction independently. When an infeasible command is given, the algorithm changes the command to a feasible one. After the feasibility of the navigational command is checked, it is translated into the desired center of mass (CM) state. To achieve the desired CM state, a reference CM trajectory is generated using predefined zero moment point (ZMP) functions. Based on the proposed algorithm, various complex walking patterns were generated, including backward and sideways walking. The effectiveness of the patterns was verified in dynamic simulations using the Webots simulator.
Keywords
Humanoid robot; Bipedal robot; Walking pattern; Gait; Locomotion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, “A realtime pattern generator for Biped walking,” in Proc. IEEE Int. Conf. Robot. Autom., May 2002, vol. 1, pp. 31-37.
2 T. Sugihara, Y. Nakamura, and H. Inoue, “Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control,” in Proc. IEEE Int. Conf. Robot. Autom., May 2002, vol. 2, pp. 1404-1409.
3 Y.-D. Hong and J.-H. Kim, “3-D command state-based modifiable bipedal walking on uneven terrain,” IEEE/ASME Trans. Mechatron., vol. 18, no. 2, pp. 657-663, Apr. 2013.   DOI
4 Y.-D. Hong, B.-J. Lee, and J.-H. Kim, “Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots,” IEEE/ASME Trans. Mechatron., vol. 16, no. 4, pp. 783-789, Aug. 2011.   DOI
5 K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, and J. Yamagushi, “Integrated motion control for walking, jumping and running on a small bipedal entertainment robot,” in Proc IEEE Int. Conf. robot. Autom., Apr. 2004, vol. 4, pp. 3189-3194.
6 K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “An analytical method on real-time gait planning for a humanoid robot,” in Proc. IEEE-RAS/RSJ Int. Conf. Humanoid Robots, Nov. 2004, vol. 2, pp. 640-655.
7 T. Sugihara and Y. Nakamura, “A fast online gait planning with boundary condition realization for humanoid robots,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 2005, pp. 305-310.
8 B. Ugurlu and A. Kawamura, “Bipedal trajectory generation based on combining inertial forces and intrinsic angular momentum rate changes: Eulerian ZMP resolution,” IEEE Trans. Robot., vol. 28, no. 6, pp. 1406-1415, Dec. 2012.   DOI
9 KK. Yin, K. Loken, and M. Panne, “Simbicon: simple biped locomotion control,” ACM Trans. Graphics, vol. 26, no. 3, Jul. 2007.
10 KK. Yin, S. Coros, P. Beaudoin, and M. Panne, “Continuation method for adapting simulated skills,” ACM Trans. Graphics, vol. 27, no. 3, Aug. 2008.
11 F. Asano, H. Asoh, M. Morisawa, S. Kajita, and K. Yokoi “Risk evaluation of ground surface using multichannel foot sensors for biped robots,” in Proc. IEEE Int. Symp. Robot. Sensors Environ., Oct. 2014, pp. 61-65.
12 C. Liu, C. Atkeson, and J. Su, “Biped walking control using a trajectory library,” Robotica, vol. 31, no. 2, pp. 311-322, Mar. 2013.   DOI
13 E. Whitman, and C. Atkeson, “Control of a walking biped using a combination of simple policies,” in Proc IEEE/RAS Int. Conf. Humanoid Robot., Dec. 2009, pp. 520-527.
14 S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped walking pattern generation by using preview control of zeromoment point,” in Proc. IEEE Int. Conf. Robot. Autom., Sep. 2003, pp. 14-19.
15 S.Shimmyo, T. Sato, and K. Ohnishi, “Biped walking pattern generation by using preview control based on three-mass model,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5137-5147, Nov. 2013.   DOI
16 K. Nishiwaki, T. Sugihara, S. Kagami, M. Inaba, H. Inoue, “Online mixture and connection of basic motions for humanoid walking control by footprint specification,” in Proc. IEEE Int. Conf. Robot. Autom., May 2001, vol. 4, pp. 4110-4115.
17 B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H. Kim, “Modifiable walking pattern of a humanoid robot by using allowable ZMP variation,” IEEE Trans. Robot., vol. 24, no. 4, pp. 917-925, Apr. 2008.   DOI
18 Y.-D. Kim, B.-J. Lee, J.-H. Ryu, and J.-H. Kim, “Landing force control for humanoid robot by time domain passivity approach,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1294-1301, Dec. 2007.   DOI
19 B.-J. Lee and K. I. Kim, “Modifiable walking pattern generation handling infeasible navigational commands for humanoid robots,” J. Elect. Eng. Technol., vol. 9, no. 1, pp. 344-351, 2014.   DOI
20 Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Trans. Robot., vol. 21, no. 5, pp. 977-984, Oct. 2005.   DOI
21 K. Hashimoto, Y. Sugahara, H. Sunazuka, C. Tanaka, A. Ohta, M. Kawase, H. -O. Lim, and A. Takanishi, “Biped landing pattern modification method with nonlinear compliance control,” in Proc. IEEE Int. conf. Robot. Autom., May 2006, pp. 1213-1218.
22 S. Lim, S.N. Oh, and K.I. Kim, “Balance control for biped walking robots using only zero-moment-point position signal,” Electronics Letters, vol. 48, no. 1, pp. 19-20, Jan. 2012.   DOI
23 O. Michel, “Cyberbotics Ltd. WebotsTM: professional mobile robot simulation,” Int. J. Adv. Robot. Syst., vol. 1, no. 1, pp. 39-42, 2004.