• Title/Summary/Keyword: Comfort Evaluation

Search Result 688, Processing Time 0.19 seconds

Design Guidelines of Road Cross Sectional Elements Based on the Satisfaction of Sensibility Cognition (감성인지 만족도를 고려한 도로횡단면 구조설계 기준 연구)

  • Seo, Im Ki;Lee, Byung Joo;Lee, Jae Sun;Namgung, Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.363-373
    • /
    • 2011
  • With rapid economic development, general demand and interest in surroundings that consist of our lives have grown gradually. In addition, as there has been increased social interest in creating landscape of roads, which considers all important factors from the user's view including accessibility, safety, and psychological stability, efforts to improve quality of roads are required. Therefore it is needed to establish standards on safe and comfort road design based on sensibility satisfaction of road users rather than based on standardized road design guidance from the engineering perspective. To this end, research was carried out to analyze sensibility satisfaction of users about road landscape focused on elements of road cross section in a city. It identified relation between sensibility satisfaction and the elements by using principal and cluster analysis, and the multiple regression models. It also found that user's satisfaction about roads and a road landscape is high with road width (3~5 meters), clear zone (2.2~3.9 meters), road central garden (1.05~1.9 meters), shoulder (0.55~1.43 meters), median (0.65~1.625 meters), the number of travel lanes (2~5), height of trees at the central garden (6.4~15 meters) and height of buildings surrounding roads (18~44 meters or 6~15 floors).

Full Mouth Rehabilitation (완전 구강 회복술)

  • Lee, Seung-Kyu;Lee, Sung-Bok;Kwon, Kung-Rock;Choi, Dae-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.171-185
    • /
    • 2000
  • The treatment objectives of the complete oral rehabilitation are : (1) comfortably functioning temporomandibular joints and stomatognathic musculature, (2) adherence to the basic principle of occlusion advocated by Schuyler, (3) anterior guidance that is in harmony with the envelope of function, (4) restorations that will not violate the patient's neutral zone. There may be many roads to achieving these objectives, but they all convey varing degrees of stress and strain on the dentist and patient. There are no "easy" cases of oral rehabilitation. Time must be taken to think, time must be taken to plan, and time must be taken to perform, since time is the critical element in both success and failure. Moreover, a systematized and integrated approach will lead to a prognosis that is favorable and predictable. This approach facilitates development of optimum oral function, comfort, and esthetics, resulting in a satisfied patient. Such a systematized approach consists of four logical phase : (1) patient evaluation, (2) comprehensive analysis and treatment planning, (3) integrated and systematic reconstruction, and (4) postoperative maintenance. Firstly, we must evaluate the mandibular position. The results of a repetitive, unstrained, nondeflective, nonmanipulated mandibular closure into complete maxillomandibular intercuspation is not so much a "centric" occlusion as it is a stable occlusion. Accordingly, we ought to concern ourselves less with mandibular centricity and more with mandibular stability, which actually is the relationship we are trying to establish. The key to this stability is intercuspal precision. Once neuromuscular passivity has been achieved during an appropriate period of occlusal adjustment and provisionalization, subsequent intercuspal precision becomes the controlling factors in maintaining a stable mandibular position. Secondly, we must evaluate the planned vertical dimension of occlusion in relationship to what may now be an altered(generally diminished), and avoid the hazard of using such an abnormal position to indicate ultimate occlusal contacting points. There are no hard and fast rules to follow, no formulas, and no precise ratios between the vertical dimension of occlusion. Like centric relation, it is an area, not a point.

  • PDF

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

A Study to Improve the Usability of the Smart Sleeping Mask based IoT (사물인터넷 기반 수면안대의 사용감 향상을 위한 연구)

  • Kwak, Jin-Young;Yang, Yeon-Ju;Lim, Jea-Kwan;Yoon, Sang-Cheol;Ahn, Taek-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.27-33
    • /
    • 2022
  • Sleep is an essential factor for living a healthy life, but most modern people complain of poor sleep. For these people, as the need for a means to simply evaluate and manage the quality of sleep increases, devices that can check the sleep state at home without monitoring by an examiner are being developed. The smart sleep mask, which is the subject of this usability test, provides bio-signal monitoring while sleeping so that you can conveniently measure and manage your sleep state for yourself. The purpose of this study is to evaluate the usability and safety of the smart sleep mask, to find and prevent potential factors related to errors in use that may occur, and to develop the comfort and safety of this product. As a result of the formative evaluation of the sleep mask prototype, it was reported that it was difficult to turn on the power and check the results, and that the sleep mask was not comfortable to wear. Different opinions were presented on the size and weight of the sleeping mask by people in different age groups.

Effect of Loess Bedding with Loess Nanoparticles on Sleep Disorder (황토나노입자를 부착한 황토이불 사용이 수면장애에 미치는 효과)

  • Lee, Ku Yeon;Hahm, Suk Chan
    • Journal of Naturopathy
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Background: No studies have reported on the effects of loess beddings on insomnia patients. Purpose: It studied the change in quality of life and quality of sleep after having 15 insomnia subjects use the bedding that emits far-infrared rays. Methods: After using loess bedding for the test group and general yellow bedding for the control group, the study was conducted in the form of a questionnaire on the WHO quality of life of the subjects. Results: In the overall quality of life evaluation, the pre-and post-changes significantly improved in the test group. Using loess bedding was greatly enhanced the physical change, the actual sleep time, and the quality of sleep of the test group. The period of sleep was significantly longer post-treating, and the habitual sleep efficiency was considerably higher, and sleep disturbance was significantly lower than before in the test group. Sleep drug use and daytime dysfunction after treating in the test group significantly improved the sleep effect. Changes in the Sociality Scale, Environmental Change Scale, and Quality of Life Scale significantly improved in the test group. The quality of life for 14 items in the test group was significantly correlated. Daytime drowsiness, depression, and anxiety scale changes were significantly improved in the test group. According to the predictive survey, the subjects felt warmth in their body and comfort in mind during and after using loess bedding and evaluated that sleep quality was good. Conclusions: The overall quality of life in the test group increased using loess bedding.

Evaluation of Particulate Matter (PM2.5) Reduction through Greenwalls in Classrooms (교실 내 벽면녹화를 통한 초미세먼지(PM2.5) 저감 효과 평가)

  • Chi-Ku Choi;Ho-Hyeong Yang;Ho-Hyun Kim;Hyuk-Ku Kwon
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.183-189
    • /
    • 2023
  • Background: The indoor air quality of classrooms, in which the capacity per unit area is high and students spend time together, must be managed for safety and comfort. It is necessary to develop an eco-friendly indoor air quality reduction method rather than biased management that relies solely on air purifiers. Objectives: In this study, plants and air purifiers were installed in middle school classrooms to evaluate the indoor PM2.5 reduction. Methods: Four middle school classrooms were selected as test beds. Air quality was monitored in real-time every one minute using IoT equipment installed in the classrooms, corridors, and rooftops. After measuring the background concentration, plants and air purifiers were installed in the classroom and the PM2.5 reduction effect was analyzed through continuous monitoring. Results: After installing the plants and air purifiers, the average PM2.5 concentration was 33.7 ㎍/m3 in the classrooms without plants and air purifiers, 25.6 ㎍/m3 in classrooms with plants only, and 21.7 ㎍/m3 in classrooms with air purifiers only. In the classroom where plants and air purifiers were installed together, it was 20.0 ㎍/m3. The reduction rates before and after installation were 4.5% for classrooms with plants only, 16.5% for classrooms with air purifiers only, and 27.6% for classrooms with both plants and air purifiers. The I/O ratio, which compares the concentration of PM2.5 in classrooms with corridors and outside air, also showed the lowest in the order of plants and air purifiers, air purifiers, and plant-only classrooms. Conclusions: The PM2.5 reduction effect of using plants was confirmed, and it is expected to be used as basic data for the development of environmentally-friendly indoor air quality improvement methods.

Development of an Angle Estimation System Using a Soft Textile Bending Angle Sensor (소프트 텍스타일 굽힘 각 센서를 이용한 각도 추정 시스템 개발 )

  • Seung-Ah Yang;Sang-Un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • This study aimed to develop a soft fabric-based elbow-bending angle sensor that can replace conventional hard-type inertial sensors and a system for estimating bending angles using it. To enhance comfort during exercise, this study treated four fabrics (Bergamo, E-band, span cushion, and polyester) by single-walled carbon nanotube dip coating to create conductive textiles. Subsequently, one fabric was selected based on performance evaluations, and an elbow flexion angle sensor was fabricated. Gauge factor, hysteresis, and sensing range were employed as performance evaluation metrics. The data obtained using the fabricated sensor showed different trends in sensor values for the changes in the angle during bending and extending movements. Because of this divergence, the two movements were separated, and this constituted the one-step process. In the two-step process, multilayer perceptron (MLP) was employed to handle the complex nonlinear relationships and achieve high data accuracy. Based on the results of this study, we anticipate effective utilization in various smart wearable and healthcare domains. Consequently, a soft- fabric bending angle sensor was developed, and using MLP, nonlinear relationships can be addressed, enabling angle estimation. Based on the results of this study, we anticipate the effective utilization of the developed system in smart wearables and healthcare.

Neuro-Anatomical Evaluation of Human Suitability for Rural and Urban Environment by Using fMRI (자연과 도시환경의 인체친화성에 대한 신경해부학적 평가: 기능적 자기공명영상법)

  • Kim, Gwang-Won;Song, Jin-Kyu;Jeong, Gwang-Woo
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2011
  • The purpose of this study was to identify different cerebral areas of the human brain associated with rural and urban picture stimulation using a 3.0 Tesla functional magnetic resonance imaging (fMRI) and further to investigate the human suitability for rural and urban environments. A total of 27 right-handed participants (mean age: $27.3{\pm}3.7$) underwent fMRI study on a 3.0T MR scanner. The brain activation patterns were induced by visual stimulation with each rural and urban sceneries. The participants were divided into two groups as 26 subjects favorable to rural scenery and 14 subjects unfavorable to urban scenery based on their filled-in questionnaire. The differences of the brain activation in response to two extreme types of pictures by the two sample t-test were characterized as follows: the activation areas observed in rural scenery over urban were the insula, middle frontal gyrus, precuneus, caudate nucleus, superior parietal gyrus, superior occipital gyrus, fusiform gyrus, and globus pallidus. In urban scenery over rural, the inferior frontal gyrus, parahippocampal gyrus, postcentral gyrus, superior temporal gyrus, amygdala, and posterior cingulate gyrus were activated. The fMRI patterns also clearly show that rural scenery elevated positive emotion such as happiness and comfort. On the contrary, urban scenery elevated negative emotion, resulting in activation of the amygdala which is the key region for the feelings of fear, anxiety and unpleasantness. This study evaluated differential cerebral areas of the human brain associated with rural and urban picture stimulation using a 3.0 Tesla fMRI. These findings will be useful as an objective evaluation guide to human suitability for ecological environments that are related to brain activation with joy, anger, sorrow and pleasure.

Development of Immobilization Devices for Patients with Pelvic Malignancies and a Feasibility Evaluation during Radiotherapy (골반부 암 환자를 위한 고정기구 개발 및 방사선치료 시 효용성 평가)

  • Park, Jong-Min;Park, Yang-Kyun;Cho, Woong;Park, Charn-Il;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.134-144
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: Immobilization devices that improve the setup reproducibility of pelvic cancer patients and that provide comfort to patients during radiotherapy were designed and the feasibility of the devices was evaluated. $\underline{Materials\;and\;Methods}$: A customized device was designed to immobilize a knee, thigh, and foot of a patient. Sixty-one patients with prostate cancer were selected and were divided into two groups-with or without devices. The setup errors were measured with respect to bony landmarks. The difference between digitally reconstructed radiographs (DRR) and simulation films, and the differences between DRR and portal films were measured. $\underline{Results}$: The left-right (LR), anterior-posterior (AP) and craniocaudal (CC) errors between the DRR and simulation films were $1.5{\pm}0.9\;mm$, $3.0{\pm}3.6\;mm$, and $1.6{\pm}0.9\;mm$, respectively without devices. The errors were reduced to $1.3{\pm}1.9\;mm$, $1.8{\pm}1.5\;mm$ and $1.1{\pm}1.1\;mm$, respectively with the devices. The errors between DRR and portal films were $1.6{\pm}1.2\;mm$, $4.0{\pm}4.1\;mm$, and $4.2{\pm}5.5\;mm$, respectively without the devices and were reduced to $1.0{\pm}1.8\;mm$, $1.2{\pm}0.9\;mm$, and $1.2{\pm}0.8\;mm$, respectively, with the devices. The standard deviations among the portal films were 1.1 mm, 2.1 mm, and 1.0 mm at each axis without the devices and 0.9 mm, 1.6 mm and 0.8 mm with the devices. The percentage of setup errors larger than 3 mm and 5 mm were significantly reduced by use of the immobilization devices. $\underline{Conclusion}$: The designed devices improved the setup reproducibility for all three directions and significantly reduced critical setup errors.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.