• 제목/요약/키워드: Comfort Conditions

검색결과 453건 처리시간 0.026초

동적 상태에서 주관적 착용감에 영향을 미치는 직물의 수증기상태의 수분전달 특성 (Moisture Vapor Management Properties of Fabrics Determining Human Sensorial Comfort in Transient Conditions)

  • 유신정
    • 한국의류학회지
    • /
    • 제24권7호
    • /
    • pp.1073-1080
    • /
    • 2000
  • Moisture transfer property of fabrics has known as one of the most important factors deciding wearer's subjective comfort not only thermally but also of sensorial. As a decisive property of fabric materials in determining human sensorial comfort, moisture vapor management property of heat resistant workwear material was examined in terms of increasing and decreasing rate and maximum value of relative humidity in the microclimate under the sweat pulse situation. An unique moisture regulation index, B$_{d}$, was calculated from the measurements using a novel dynamic sweating hot plate apparatus and was used to assess the buffering capacity of fabrics against a moisture vapor sweat pulse.e.

  • PDF

여름철 수면시 온열쾌적감 평가 - 제3보 : 실내온도 상승에 관하여 - (Evaluation of Thermal Comfort during Sleeping in Summer - Part III : About Indoor Air Temperatures Rise -)

  • 김동규;금종수;김세환
    • 설비공학논문집
    • /
    • 제18권7호
    • /
    • pp.535-540
    • /
    • 2006
  • This study was performed In evaluate sleep efficiencies and conditions for comfortable sleep based on the analysis of Physiological signals under variations in thermal conditions. Five female subjects who have similar life cycle and sleep patterns were participated for the sleep experiment. It was checked whether they had a good sleep before the night of experiment. EEGs were obtained from C3-A2 and C4-A1 electrode sites and EOGs were acquired from LOC (left outer canthus) and ROC (right outer canthus) for REM sleep detection. Sleep stages were classified, then TST (total sleep time), SWS (slow wave sleep) latency and SWS/TST were calculated for the evaluation of sleep efficiencies on thermal conditions. TST was defined as an amount of time from sleep stage 1 to wakeup. SWS latency was from light off time to sleep stage 3 and percentage of SWS over TST was calculated for the evaluation of sleep quality and comfort sleep under thermal conditions. As result, the condition which raise a room temperature provided comfortable sleep.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • 대한인간공학회지
    • /
    • 제36권3호
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

감염병 대응 개인보호복의 동작성 및 열적 쾌적성: 보호 수준 및 여성 착용자 체격의 영향 (Mobility and Thermal Comfort Assessment of Personal Protective Equipment for Female Healthcare Workers: Impact of Protective Levels and Body Mass Index )

  • 김도희;전영민;이호준;강경리;이초은;이주영
    • 한국의류산업학회지
    • /
    • 제26권1호
    • /
    • pp.123-136
    • /
    • 2024
  • This study aimed to assess the mobility and thermal comfort of personal protective equipment (PPE) among female healthcare workers, taking into account wearers' physique and PPE protection levels. A total of 16 participants (age: 26.3 ± 8.3 y, height: 161.5 ± 7.3 cm, body weight: 57.1 ± 11.0 kg, BMI: 21.9 ± 3.6), representing diverse body types, underwent four PPE conditions: L (Low_Plastic gown ensemble), M (Medium_Tyvek 400), H (High_Tyvek 800J with Powered Air Purifying Respirator [PAPR]), and E (Extremely high_Tychem 2000 with PAPR, Bib apron, and Chemical-resistant gloves). The mobility protocol consisted of 10 different tasks in addition to donning and doffing. The 10 tasks were repeated twice at an air temperature of 24.3 ± 0.1℃, 59±4%RH. Findings revealed a disproportionate relationship between PPE protection and wearer discomfort. Significant differences in clothing microclimate and total sweat rate were observed between the lowest (L) and highest (E) protection levels (p < 0.01), while distinctions among medium levels were inconclusive. Subjective evaluations favored conditions H and L over M and E (p < 0.05), indicating reduced heat, and humidity, increased comfort, and lower exertion. Instances of mobility discomfort, specially in the small body type group, underscored the need for a suitable PPE size system for Korean adult female medical workers. Furthermore, enhancements in gloves, shoe cover, and PAPR hood designs are essential for improving ease of movement and preventing hindrance.

자동차 시트의 피로도 평가를 위한 근전도 평가를 위한 근전도 측정기의 사용 (The Use of Electromyography for Fatigue Evaluation of Automotive Seats)

  • 이영신;이의신;박세진
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 춘계학술대회논문집
    • /
    • pp.10-16
    • /
    • 1997
  • The ride comfort is one of the most important indices which decide the quality of automotive seats. A subjective evaluation is the general method for comfort evaluation of automotive seats. But the subjective evaluation assess the individual sensibility using questionnaire. Therefore, a need to develop methodologies to obtain objective measurements of the fatigue evaluation is evident. In an effort to monitor muscle activity during driving electromyography (EMG) was employed. In an experimental setting the subjective evaluation was conducted using questionnaire under the static conditions (8 subjects) and the fatigue was induced in muscles using EMG under the dynamic conditions (2 drivers). The resultant EMG signals were then sampled for three different muscles. In test involving 2 subjects of similar size and build, utilizing four different automotive seats, test results support the use of EMG to quantify muscular fatigue as a viable means of objective evaluation for the different automotive seats.

  • PDF

대류난방시 실내열환경에 관한 연구 - 온도 및 기류속도에 대한 온열쾌적감- (The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort by Indoor Air Temperature and Velocity -)

  • 김동규;정용현
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.209-214
    • /
    • 2005
  • Draft is defined as an unwanted local cooling of the human body caused by air movement. It is a serious problem in many ventilated or air conditioned buildings. Often draft complaints occur although measured velocities in the occupied zone maybe lower than prescribed in existing standards. Purpose of this study is to clarify the evaluation of thermal comfort based on temperature and air velocity in winter. Experiments were performed in an environmental chamber in winter. Indoor temperature and air velocity was artificially controlled. The experiments were performed to evaluate temperature conditions and air velocity conditions by physiological and psychological responses of human. According to physiological responses and psychological responses, it was clear that the optimum air velocity is about 0.15 m/s and 0.30 m/s.

대형 크루저 선실의 동절기 온열환경 측정평가 (A Measurement and Evaluation on the Cabins' Thermal Conditions of Large Cruiser in the Winter)

  • 황광일;문태일;박민강;심재건
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.231-232
    • /
    • 2006
  • The purpose of this study is to measure and evaluate the thermal conditions of large cruiser's cabin. As the result of this study, followings are cleared. The air volume supplied to the 2 types of cabins is quite diffenrent. Temperature differences in the Room A which is located A deck and supplied enough air volume is stable all around the cabin. But Room B which is located B deck and supplied comparatively small air volume has temperature distribution problems, like time-dependent differences, vertical differences. To serve more comfort and productivity of Room B, it is strongly recommended to do a T.A.B.(Testing, Adjusting and Balancing) for more air volume and/or to design new air flow path to make air stay longer.

  • PDF

냉방조건에서 실내기 위치 및 환기량에 따른 열쾌적성 및 유동 특성 (Thermal Comfort and Air Flow Patterns for Indoor Unit Positions and Ventilation Rates in Cooling Operation)

  • 고재윤;강태욱;박률
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.221-229
    • /
    • 2008
  • This study analyze indoor thermal comfort properties such as PMV, PPD and fluid variables when the cooling loads are light, occupant and ventilation. There are 6 cases to study for the indoor unit installation conditions and ventilation rates. Numerical method is used to study the indoor environmental properties and experimental study is adapted to analyze reaching time by variable cooling load conditions.

복사 난방 패널의 공급유량 및 설계변수가 성능에 미치는 영향 (The Effects of Operating and Design Conditions on the Performance of Radiant Heating Panel)

  • 이태원;김호영
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.276-285
    • /
    • 1991
  • The transient heat transfer characteristics in the radiant heating panel were predicted by numerical analysis. Thermal behaviors of panel, such as temperature distributions in panel and convective and radiative heat fluxes in panel surface with respect to time were obtained. Heating hours per day, rate of energy supplied and maximum temperature differences at panel surface were also compared for several important parameters. The performance and thermal comfort of heating panel were studied and compared for various operating and design conditions such as pipe pitch, pipe location, pipe diameter and flow rate of hot water for the purpose of producing useful data, which can be used for the test and decision of efficient operating condition of the conventional heating systems or the optimal design of the new panel heating systems.

  • PDF