• Title/Summary/Keyword: Combustor-Level Turbulence

Search Result 7, Processing Time 0.019 seconds

Effects of Combustor-Level High Free-Stream Turbulence on Blade-Surface Heat/Mass Transfer in the Three-Dimensional Flow Region near the Endwall of a High-Turning Turbine Rotor Cascade

  • Lee Sang Woo;Kwon Hyun Goo;Park Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1347-1357
    • /
    • 2005
  • Effects of combustor-level high free-stream turbulence on the blade-surface heat/mass transfer have been investigated in the three-dimensional flow region near the endwall within a high-turning turbine rotor cascade passage. Free-stream turbulence intensity and integral length scale in the high turbulence case are 14.7 percents and 80 mm, respectively. The result shows that there is no considerable discrepancy in the blade heat/mass transfer near the endwall between the low and high turbulence cases. As departing from the endwall, however, the deviation between the two cases becomes larger, particularly in the region where flow separation and re-attachment occur. Under the high turbulence, flow disturbances such as boundary-layer separation and re-attachment seem to be suppressed, which makes the blade heat/mass transfer more uniform. Moreover, there are some evidences that endwall vortices tend to be weakened under the high turbulence.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Endwall Heat (Mass) Transfer in a Turbine Cascade Under Combustor-Level High Free-Stream Turbulence (연소기 출구 난류 상태에서의 터빈 익열 끝벽 열(물질)전달 특성)

  • Jun, Sang-Bae;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.759-764
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade passage under a combustor-level high free-stream turbulence with a large length scale. Local heat (mass) transfer coefficients are measured by using the naphthalene sublimation technique. The result shows that local heat (mass) transfer on the endwall is greatly enhanced in the central region of the turbine passage, but there is no noticeable change in the local heat (mass) transfer in the region suffering severe heat load. Under the high free-stream turbulence, the local heat (mass) transfer coefficient shows more uniform distribution and its average value across the whole endwall region is increased by 26% of that at low turbulence condition. The heat (mass) transfer data on the endwall strongly supports that well-organized vortices near the endwall tends to suffer an suppression by the high free-stream turbulence.

  • PDF

NUMERICAL MODELING FOR FLAME STABILIZATION OF GAS TURBINE COMBUSTOR (가스터빈 엔진의 화염안정성에 대한 수치모델링)

  • Kang Sungmo;Kim Yongmo;Chung Jae-Hwa;Ahn Dal-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.201-206
    • /
    • 2005
  • In order to realistically represent the complex turbulence-chemistry interaction at the partially premixed turbulent lifted flames encountered in the gas turbine combustors, the combined conserved-scalar/level-set flamelet approach has been adopted. The parallel unstructured-grid finite-volume method has been developed to maintain the geometric flexibility and computational efficiency for the solution of the physically and geometrically complex flows. Special emphasis is given to the swirl effects on the combustion characteristics of the lean-premixed gas turbine combustor. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics for the lean-premixed gas turbine engines and the lifted turbulent jet flame with a vitiated coflow.

  • PDF

Effect of Vortex and High Turbulence on Film Cooling for Gas Turbine Combustor and Blades (가스터빈 연소실 및 블레이드 막냉각에서 와류 및 높은 난류 강도의 유동 효과에 대한 연구)

  • Cho, Hyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.471-474
    • /
    • 1996
  • The effects of injection angles between $0^{\circ}$ and $9^{\circ}$, mainstream turbulent intensities between 0.36 percent and 9.3 percent and embedded longitudinal vortices on jets issuing from a single film cooling hole and from a row of inclined holes are investigated. The heat transfer coefficients around film cooling holes are affected greatly by the compound injection angles. The injected jets affected weakly by the freestream turbulence at low level. However, the heat transfer coefficients near the film cooling holes have higher values at a high turbulence intensity. The vortices generated from a delta winglet change the injected jet direction and the kidney-type vortex pattern.

  • PDF

Heat Transfer Characteristics on the Tip Surface of a High-Turning Turbine Rotor Blade (고선회 터빈 동익 팁 표면에서의 열전달 특성)

  • Lee, Sang-Woo;Moon, Hyun-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.207-215
    • /
    • 2008
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. At the Reynolds number of $2.09{\times}10^5$, heat/mass transfer coefficients are measured for the tip gap height-to-chord ratio, h/c, of 2.0% at turbulence levels of Tu = 0.3 and 14.7%. A tip-surface flow visualization is also performed for h/c = 2.0% at Tu = 0.3%. The results show that there exists a strong flow separation/re-attachment process, which results in severe local thermal load along the pressure-side corner, and a pair of vortices named "tip gap vortices" in this study is identified along the pressure and suction-side tip corners near the leading edge. The loci and subsequent development of the pressure- and suction-side tip gap vortices are discussed in detail. The combustor-level high inlet turbulence, which increases the tip-surface heat/mass transfer, provides more uniform thermal-load distribution.

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 난류 선회 비예혼합 연소기의 화염구조 및 공해물질 생성의 해석)

  • Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.289-291
    • /
    • 2012
  • The present study numerically investigate detailed flame structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. And level-set approach is also utilized to account for the partially premixing effect at fuel and oxidizer injector in KEPRI nonpremixed combustor. Based on numerical results, the detailed discussion has been made for the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames.

  • PDF