• Title/Summary/Keyword: Combustor Design

Search Result 254, Processing Time 0.024 seconds

Combustion characteristics in small combustion chamber that has high surface to volume ratio (고 표면적-체적 비를 가지는 소형 연소실 환경에서의 연소특성)

  • Lee, Dae-Hoon;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.212-216
    • /
    • 2000
  • Combustion phenomenon in scale-downed combustor is investigated. As the combustor volume decreases surface to volume ratio increases. for increased surface to volume ratio means increased heat loss and this increased heat loss affects reaction in combustion chamber. Plastic mini combustor is made. Stoichiometricaly premixed Hydrogen I air gas is used as fuel. Initial chamber pressure and chamber size are varied and the effects are evaluated. Peak pressure decreases with the decrease in chamber height. As initial chamber pressure decreases peak pressure decreases. And this change is more important than scale down effect till the chamber height of 1mm. With this result and further information following the experiments design parameter for micro engine can be established.

  • PDF

The experimental study on the NOx formation of fuel staged combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.163-171
    • /
    • 2001
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot Dame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by ${>}$70% in accordance with operating conditions.

  • PDF

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

Analysis of Heat Loss Effect of Combustion in Closed Vessel (정적 연소실에서의 열 손실 해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Interests and importance of down-scale combustor is increasing with the emerging need for miniaturized power source which is now a bottleneck of micro system development. But in down scaled combustor increased heat loss compared to thermal energy generation inhibits the usability and application of the device, so as a preliminary work of down scaled combustor fabrication. Modeling tool for the device should be established, in this study modeling approach of closed vessel combustion phenomena that can express heat loss effect and resulting quenching is proposed and the result is compared with experiment data. From this model heat loss effect following combustor scale down can be further understood, and further more design parameter and analysis tool can be obtained.

  • PDF

Investigation of Solid Fuel Combustion Characteristics in Various Types of Combustors (다양한 종류의 연소로 내 고체 연료의 연소 특성 고찰)

  • Choi, Jin-Hwan;Yang, Won;Lee, Sang-Deuk;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • This study is aimed to characterize the combustion behavior of solid fuel in the various types of the combustors: stoker, rotary kiln and fluidized bed type combustors. Three different types of reduced-scale combustors are introduced, and temperatures and flue gas compositions are measured for various fuel sizes, water contents, initial temperature, and air flow rates. In case of the rotary kiln combustor, effects of rotating speed of the combustor are also investigated. Mean carbon conversion time (MCCT) and flame propagation rate (FPR) are used for the quantitative analysis. It is revealed that the reaction rates of the fuel are significantly influenced by the fuel characteristics, type of the combustors and air flow rate. Major design parameters for each type of the combustors are summarized through the reduced-scaled model analysis.

  • PDF

Comparison Study on System Design Parameters of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓엔진의 시스템 설계 인자 비교)

  • Nam Chang-Ho;Park Soon-Young;Moon Yoon-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-223
    • /
    • 2005
  • System design parameters of gas generator cycle liquid rocket engines were investigated and compared in the present study. Characteristic velocity of combustor, pressure drop of combustor injector, exit pressure of pump, pump efficiency and specific power of turbine were considered as a system design parameter. The result shows the characteristic velocity is in the range of 1700-1770 m/s, pressure drop of combustor injector, 4-10 bar, pump exit pressure ratio to combustion pressure, 120-230%, pump efficiency, 60-80%, specific power of turbine, $0.28-0.58MW{\cdot}s/kg$.

  • PDF

Design of a Model Combustor for Studying the Combustion Characteristics of O2/H2 Flames at Supercritical Conditions (O2/H2 화염의 초임계 조건 연소 특성 연구를 위한 모델 연소기 설계)

  • AHN, YEONG JONG;KIM, YOUNG HOO;KWON, OH CHAE
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.96-104
    • /
    • 2020
  • A model combustor has been designed and fabricated for studying the combustion characteristics of oxygen (O2)/hydrogen (H2) flames under supercritical conditions. The combustor is designed to allow combustion experiments up to 60 bar, the supercritical pressure condition of O2 and H2. Injectors can be replaced to study various types of flames and the combustion chamber is designed to visualize flames by installing optical windows. Through the preliminary tests, including a high-pressure (up to 60 bar) test using air and combustion tests for coaxial jet flames of liquid oxygen (LO2)/gaseous hydrogen (GH2) at elevated pressure, the reliability of the combustor has been demonstrated.

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System (스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석)

  • Ko, Hyosang;Yang, Jaehoon;Yoh, Jai ick;Choi, Hanlim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

Coupled Thermal-Structural Analysis of the Combustor Assembly of 200kW Micro Gas Turbine Engine (200kW급 마이크로 가스터빈 연소기의 열-구조 연성 해석)

  • Park, Sangjin;Rhee, Huinam;Lee, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4093-4099
    • /
    • 2014
  • In this study, the thermal-structural behavior of the combustor assembly of 200 kW micro gas turbine system was performed. The typical combustor assembly consists of a Liner, Inner & Outer Case, Burner and Nozzle ring, etc. There are some gaps and friction elements between the components to compensate for the different thermal expansions of various components. Therefore, the developed finite element model includes nonlinear elements. The boundary support conditions of the combustor assembly significantly affect the stress distribution due to the high temperature gradient. This paper deals with parametric studies to quantitatively determine the effects of the variation of the support conditions on the stress distribution and deformation of various components of combustor assembly. These results may be useful for the design of the combustor assembly.

Performance Test of A Reverse-Annular Type Combustor (TS2) for APU (보조동력장치용 환형 역류형 연소기 (TS2) 성능 시험)

  • Ko, Young-Sung;Han, Yeoung-Min;Lee, Kang-Yeop;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.805-810
    • /
    • 2002
  • Development of a small gas-turbine combustor for 100㎾ class APU(Auxiliary Power Unit) has been performed. This combustor is a reverse-annular type and has a tangential swiller in the liner head to improve the fuel/air mixing and flame stability. Three main and three pilot fuel injectors of the simplex pressure-swirl type are used. The performance target at the design condition includes a turbine inlet temperature of l170k, a combustion efficiency of 99%, a pattern factor of 30%, and an engine durability of 3000 hours. Under developing the combustor, we conducted the performance test of our first prototype(TS1) with some variants. As a result of the test, the performance targets of the combustor are satisfied except that the pattern factor is about 4% higher than the target value. Therefore, the second prototype(TS2) was redesigned and the performance test was conducted with the critical focus on the pattern factor and the exit mean temperature. We adopted TS2 four variants to check the improvement of the pattern factor. As a result, the pattern factors of several variants were satisfied with the performance target. Finally, the TS2A variant was chosen as a final combustor fur our APU model.