• Title/Summary/Keyword: Combustor Chamber

Search Result 179, Processing Time 0.027 seconds

Experimental Study of Combustion Characteristic for Dual Mode Ramjet Combustor (이중모드 램제트 연소기 연소특성 실험적 연구)

  • Shim, ChangYeul;Namkoung, HyuckJoon;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.325-329
    • /
    • 2017
  • In this study, the combustion experiment of hydrocarbon-kerosene fueled dual mode ramjet combustor was performed at mach number 3.5~6.0 conditions. Through the experiment, the temperature and the pressure distribution inside the combustion chamber were measured and the combustion characteristics inside the combustion chamber were investigated. In the mach number 3.5~5.0 range, it was able to identify subsonic combustion in the downstream combustion chamber. In the mach number 6.0 condition, the injected fuel from the injectors was naturally fired, and it was possible to confirm that supersonic combustion was successful in the upper chamber.

  • PDF

Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Combustor (액체추진제 로켓엔진 연소기 저주파 동특성)

  • Ha Seong-Up;Jung Young-Seok;Kim Hui-Tae;Han SangYeop;Cho Gwang-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.91-101
    • /
    • 2004
  • With the mathematic linear model of a combustor which consists of a combustion chamber and injectors, the analysis of low frequency dynamic characteristics of a liquld-propellant rocket engine combustor was performed. Propellant mass flowrate was varied by combustion chamber pressure feedback, therefore low frequency oscillation was appeared. Increasing the time constant of a combustion chamber and injector pressure differences and decreasing combustion time delay increased the combustor system stability. The variation of injector time constant little affected stability. The system was always stable, when there was no combustion time delay. Increasing combustion time delay decreased oscillation frequency and damping ratio, and the system eventually became unstable.

Acoustic Coupling between Longitudinal and Transverse Modes in an Annular Gas Turbine Combustor (환형 가스터빈 연소기에서 종방향 및 횡방향 음향모드 커플링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Transverse acoustic mode in annular combustion chambers affects air-fuel mixing characteristics in the nozzle and can result in heat release fluctuations in the combustor. In addition, the acoustic mode coupling between the nozzle and the combustion chamber is one of the key parameters determining combustion instability phenomenon in the annular combustor. In this study, acoustic coupling between the nozzle and annular combustor was numerically analyzed using 3D-based in house FEM code. As a result, it was found that the acoustic mode inside the combustion chamber at anti-node locations of the transverse mode was strongly influenced by the nozzle inlet boundary conditions.

Numerical Study on Combustion Charaterestics in a Constant Volume Combustor Having a Radical Injector (라디칼인젝터를 적용한 정적연소기의 연소특성에 관한 계산적 연구)

  • Jo, Sang-Mu;Jeon, Jae-Hyeuk;Jang, In-Sun;Jeong, Sung-Sik;Park, Kweon-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1309-1316
    • /
    • 2003
  • A premixed-compression-ignition engine has been studied to improve the efficiency and to decrease exhaust emissions. However those systems have some difficulties for controlling combustion process. Radical is an activated chemical species formed by a chemical chain reaction between reactant and product. When the chain reactions occur, the energy bond of species is broken easily by the released radicals. The combustion chamber of the premixed-compression-ingnition engine is consist of a main chamber with lean premixture and a subchamber with rich premixture. Those are connected by narrow cylinderical connections. With ignition start in the subchamber, many different kinds of radical is jetted into the main chamber. The premixed gas in main chamber is quickly burned up by the radical ignition in multi-pionts. In this paper, the combustion phenomena in a constant volume combustor having a radical injector are numerically analyzed. The some constants in the reaction rate equation are adjusted by the experimental results tested in the same geometrical chamber. The code is applied on the two combustors in a wide range of equivalence ratio. The results show that the burning time is much shorter in the combustor having radical injector.

Combustion Characteristics of A Regenerative Combustor with the Change of Alternating Period (절환주기 변화에 다른 축열 연소기의 연소특성)

  • Yang, B.O.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • Experimental study on combustion characteristics of a regenerative combustor has performed. High-temperature air combustion in the regenerative combustor is obtained through heat recovery from exhaust gas flow by porous ceramic materials and through alternation of air flow direction through the combustor. Temperature field, CO and NOx emission with respect to the frequency of alternation are measured. It is found that at initial stage of the alternation, temperature of inlet section of main combustion chamber is increased sharply since both high temperature air preheated by the ceramics and prompt fuel injection results in rapid combustion. Following this initial stage, combustion temperature is reduced as the preheated air temperature is reduced. However peak temperature in the chamber and exhaust gas temperature are decreased as the alternation period is reduced, increased temperature of ceramic is observed. CO and NOx emission with respect to the alternation period is also examined. It is found that there exists a range of optimum alternating period for CO and NOx emission characteristics.

  • PDF

Effect of Flows on the Evolution of Sprays and Combustion in Ramjet Combustor (I) : Ram Air Flows in Combustion Chamber (램제트 연소기 내 유동조건에 따른 분무 및 연소천이 (I) : 연소실 램공기 유동)

  • 함희철;이진호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.50-54
    • /
    • 2002
  • With a view to estimating the effect of flows on evolving sprays and combustion in ramjet combustor and corresponding extent of combustion, ram air flows in combustion chamber is numerically experimented. Preconditioned three dimensional Navier-Stokes system of equations per transient, compressible, turbulent flows in IRR(Integral Rocket Ramjet) combustor is numerically integrated. Flow properties in the side-dump ramjet combustor, rectangular duct with two 60-deg curved inlets located radially at an angle of 180-deg, are addressed in terms of mixing quality and extent of combustion efficiency.

  • PDF

The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor (예혼합 희박연소 가스터빈 연소기의 저 NOx 특성)

  • Pae, H.S.;Ahn, K.Y.;Park, J.I.;Ahn, J.H.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF

Secondary Flow Characteristics in a Liquid Ramjet Combustor Using Stereoscopic PIV (Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 특성)

  • Kim S. J.;Sohn C. H.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.58-62
    • /
    • 2005
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor were investigated using CFD and Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach 0.3 at inlet. The computational and experimental results showed that the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation regions are increased with approaching closer to the center of the combustor. Since the performance of combustor is closely dependent not only on the main recirculation in the dome region but also on the secondary recirculation flow in a junction region, the optimal angle of the air intakes should be considered the recirculation size as frame holder.

  • PDF

Flow Characteristics of secondary recirculation region for using Stereoscopic PIV in a Liquid Fuel Ramjet Combustor (Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 측정)

  • Kim S. J.;Choi J. H.;Park C. W.;Sohn C. h.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.115-120
    • /
    • 2003
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor are investigated using CFD and 3-D Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach0.3 at inlet. Both computational and experimental results showed the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation region increased with upon closer center of axial combustor. Since the performance of combustor depends on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the recirculation size as frame holder.

  • PDF

The Structural Design for Combustor Chamber of Liquid Rocket Engine (액체로켓엔진 연소기 챔버 구조 설계)

  • Chung Yong-Hyun;Ryu Chul-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.36-42
    • /
    • 2004
  • The Properties of material, C18200 which is used for development of high performance liquid rocket engine combustor chamber were obtained by tension tests. The specimen for regenerative combustor was designed by structural analysis using that Properties. After the designed specimen was manufactured by the same manufacturing process of regenerative combustor. the yielding stress and yielding strain were obtained by strength tests. The properties of C18200 was degraded very much after brazing. The estimation of yielding pressure by structural analysis was almost same as that of strength test. The collector Part was yielded and failed previously than that of cooling channel part during strength test.