• Title/Summary/Keyword: Combustion velocity

검색결과 894건 처리시간 0.03초

천연가스 연료의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Natural Gas Fuels)

  • 박명호;이선봉
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1248-1253
    • /
    • 1999
  • This study is concerned about the combustion characteristics of methane-air and methane/hydrogen-air mainly the behavior of burning velocity including the effect of the ignition energy. The experiments were conducted in a spherical combustion bomb designed in this laboratory. The burning velocities were measured by the pressure-time history and the reaction rates were estimated theoretically. The experimental results showed that the burning velocity increased by 25 to 50 percent when hydrogen is added to methane by 20 percent.

SHS 마이크로파에 의한 (Ti.Si)C 복합체의 합성 및 소결특성에 관한 연구 (Study on Synthesis and Characterization of (Ti.Si)C Composite by SHS Microwave)

  • 이형복;권상호;이재원;안주삼
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.1009-1018
    • /
    • 1995
  • (Ti.Si)C composite powders were synthesized by SHS method using microwave energy. Compositional and structural characterization of the powder were carried out by using scanning electron microscopy and X-ray diffraction. The average particle size of the synthesized (Ti.Si)C composite powders was smaller than that of the starting materials. From the results of the temperature profile, combustion temperature and velocity were decreased with increasing Si molar ratio. With increasing C molar ratio combustion temperature and velocity did not change. (Ti.Si)C composite was sintered at 185$0^{\circ}C$ for 60 min by using hot-pressing with 30 MPa. The best properties were obtained from the sintered specimen whose composition was 1 : 1 : 1.9 molar ratio of Ti : Si : C. The sintering density, flexural strength and vickers hardness of the sintered body were 4.71 g/㎤, 423 MPa and 21 GPa, respectively.

  • PDF

폐열회수겸용 버너의 설계 기술 개발에 관한 연구 ( I ) (A Study on the Development of a Recuperative Burner ( I ))

  • 박병식;김원배;정대헌;김유
    • 한국연소학회지
    • /
    • 제1권2호
    • /
    • pp.1-7
    • /
    • 1996
  • A recuperative, burner in the capacity of 400kW was designed using the design data from the experimental results. Performance tests on this burner were made. The exhaust gas analysis, including NOx, the measurement of the flame temperature and velocity in the recuperative burner were the main topics of hot combustion tests. Design data from the experimental results are the gas velocity, air velocity, the tip location of gas nozzle and the dimension of furnace. In view of uniform temperature distribution and thermal efficiency, it is appropriate to maintain the furnace pressure at 2-3mmAq.

  • PDF

전기차와 내연기관차의 파워트레인 손실 및 효율 비교 (Comparative Study of Powertrain Loss and Efficiency for the Electric Vehicle and Internal Combustion Engine Vehicle)

  • 김정민
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, the component loss models of the electric vehicle(EV) and the internal combustion engine vehicle(ICEV) are developed to analyze the losses and efficiencies of these two types of vehicles. The EV powertrain efficiency decreases as the vehicle velocity increases over most of the vehicle velocity range because the battery efficiency decreases. Especially, the EV powertrain efficiency decreases significantly when the battery SOC is low. But the ICEV powertrain efficiency increases as the vehicle velocity increases. This is because the efficiencies of both the transmission and engine increases.

75톤급 액체로켓엔진 연소기 기본설계 (Basic Design of Combustion Chamber for 75 ton Liquid Rocket Engine)

  • 한영민;김종규;이광진;서성현;김성구;유철성;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.125-129
    • /
    • 2009
  • 본 논문에서는 대형 우주 발사체에 적용 가능한 추력 75톤급 액체로켓엔진 연소기의 기본설계에 대해 기술하였다. 이 연소기는 진공추력 74.8 ton, 진공비추력 306.9 sec, 연소실 압력 60 bar, 추진제 유량 243.6 kg/s, 연소특성속도 1730 m/sec을 갖는다. 연소기의 성능에 미치는 연소특성속도, 추력계수 그리고 비추력에 대해 알아보았고, 연소기의 기하학적인 형상에 대해서도 기술하였다. 75톤급 액체로켓 엔진 연소기는 분사기를 장착한 연소기 헤드, 재생냉각 채널을 가지고 있는 연소실로 구성되어 있다.

  • PDF

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

자려 연소진동에 관한 연소제어와 징후의 검출 (Combustion Control and Symptom Detection on Self-excited Combustion Oscillation)

  • 양영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1111-1122
    • /
    • 2004
  • An idea to suppress the self-excited combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined and the unsteady combustion was driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by this method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillation. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure For the purpose, the unique measures to observe the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals, have been proposed.

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석 (Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor)

  • 윤지수;김민기;이민철;윤영빈
    • 한국추진공학회지
    • /
    • 제16권5호
    • /
    • pp.10-19
    • /
    • 2012
  • 연소불안정 현상을 제거하거나 효과적으로 제어하기 위해서는 화염구조에 대한 이해가 매우 중요하다. 이에 본 연구에서는 OH 자발광 및 He-Ne 레이저 광흡수 계측기법을 이용하여 연소불안정과 화염 구조사이의 상관관계에 대한 실험적 연구를 다양한 실험조건에서 수행하였다. 실험에서는 673 K로 가열된 swirl 형태로 공급되는 건조한 공기와 LNG($CH_4$) 연료를 사용하였으며 전체 당량비는 1.2 조건에서 속도를 25 ~ 70 m/s까지 바꾸어가며 실험을 수행하였다. 이를 통하여 연소불안정 현상이 낮은 속도조건과 높은 속도조건에서 발생하는 것을 확인할 수 있었고, 낮은 속도조건의 불안정에서는 화염의 와동구조가 연소불안정현상에 영향을 끼친다는 것을 확인할 수 있었다.