• Title/Summary/Keyword: Combustion velocity

Search Result 894, Processing Time 0.023 seconds

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method (자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘)

  • Ha, Ho;Hwang, Gyu-Min;Han, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

Combustion Performance Results of Combustion Chamber for 30ton-f Class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 연소시험 성능결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.139-143
    • /
    • 2007
  • The overall results of combustion tests performed for a 30 tonf-class full-scale combustion chambers of a liquid rocket engine were described. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/so The combustion chamber is composed of mixing head, SUS baffle, baffle injector, ablative chamber, channel cooling chamber and regenerative cooling chamber. The test results show that the combustion characteristic velocity is in the range of 1673${\sim}$1730 m/sec and the specific impulse of the combustion chamber is in the range of 254${\sim}$263 sec. As the recess number of the injectors increases, the combustion characteristic velocity increases. And as the combustion characteristic velocity increases, the specific impulse of the combustion chamber also increases.

  • PDF

Studies on the Utilization of Low Quality Goals(2) Regulation of combustion velocity on household briquettes (低質炭의 利用硏究 (第二報) (家庭用煉炭의 燃燒速度의 調節))

  • Oh, Shin-Sub;Kim, Chung-Hyuk
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.81-82
    • /
    • 1957
  • With the purpose of applying the results outlined in Report(1) to household briquetts, combustion ratio, i, c, combustion hours has been determined. The results of combstion velocity are directly proportional to rate of mixture of anthracite, and inversely proportional to graphitc.

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure (75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.66-70
    • /
    • 2010
  • The performance of 75 ton liquid rocket engine combustion chamber for a space launch vehicle was predicted through firing tests at low pressure. In low pressure tests of 75 ton LRE combustor chamber, the combustion characteristic velocity of 1750 m/sec and the specific impulse of 240 sec were obtained which are higher than the low pressure performance of 30ton combustion chamber. The combustion characteristic velocity of 1770 m/sec and the specific impulse of 278 sec at design point for 75 ton LRE combustion chamber were predicted by using the low/high pressure performance correlation of 30ton LRE combustion chamber.

  • PDF

Understanding of Laminar Burning Velocity within a Length Scale Domain (길이 스케일이 관여된 층류 화염의 연소 속도 이해)

  • Jung, Yongjin;Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.77-78
    • /
    • 2015
  • Laminar burning velocities have been predicted by constant volume combustion chamber, counter flow burner and others. In this study, the measured flame propagation velocities in an assembled annular stepwise diverging tube were plotted with respect to equivalence ratio, length scale, and velocity scale. Three dimensional approach to understand the flame propagation velocity including laminar burning velocity is investigated, and the surface provides the correlation among quenching distance, propagation velocity, and equivalence ratio.

  • PDF

Comparison of the Combustion Characteristics of Methane-Air and Gasoline-Air Mixtures (가솔린.메탄의 연소특성 비교)

  • Park, M.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.7-11
    • /
    • 2002
  • Comparison of the combustion characteristics of methane-air and gasoline-air mixtures has been conducted experimentally by a spherical bomb technique. The results indicate 1) the burning velocity of gasoline is slightly higher than that of methane, but their basic behavior of combustion characteristics, positive dependence on temperature and negative one on pressure, are the same, and 2) 20 vol.% addition of hydrogen to methane enhances the burning velocity by about 30%, but does not come to reverse the tendency of pressure dependence to that of pure hydrogen.

  • PDF

Combustion Characteristics Analysis of Methane-Air Homogeneous Mixture in a Constant Volume Combustion Chamber (정적연소기에서의 메탄-공기 균질혼합기의 연소특성 분석)

  • Lee, Suk-Young;Kim, Sang-Jin;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • In this study, a cylindrical constant volume combustion chamber is used to investigate the flow and combustion characteristics of methane-air homogeneous mixture under various initial charge pressure, excess air ratios and ignition times. The flame and burning speed, mean gas speed are calculated by numerical analysis to analyze the combustion characteristics. It is found that the mean gas velocity during combustion has the maximum value around 300 ms and then decreased gradually on the condition of 10000 ms, and that the combustion duration is shorten and flame speed and burning velocity have the highest value under the conditions of an excess air ratio 1.1, an initial charge pressure of 0.2 MPa and an ignition time of 300 ms in the present study. And, the initial pressure and burning speed are in inverse proportion, so that it is in agreement with Strehlow who presented that the initial pressure and burning speed are in inverse proportion when the burning speed is under 50cm/s.

  • PDF

Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions (반응물 분사조건에 따른 무화염 연소특성 연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.