• Title/Summary/Keyword: Combustion source

Search Result 488, Processing Time 0.025 seconds

Effect of radiation model on simulation of water vapor - hydrogen premixed flame using flamelet combustion model in OpenFOAM

  • Kim, Sangmin;Kim, Jongtae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1321-1335
    • /
    • 2022
  • This study was conducted to investigate the effect of absorption coefficient models on the P1 radiation model for a premixed hydrogen flame containing the water vapor. A CFD combustion simulation analysis was performed using XiFoam, one of the open-source CFD solvers in OpenFOAM. The solver using the flamelet combustion model has been modified to implement radiative heat transfer. The absorption coefficient models used in this study the grey-mean model and constant model, and for comparison, case without radiation was added. This CFD simulation study consisted of benchmarking the THAI HD-15 and HD-22 experiments. The difference between the two tests is the inclusion of water vapor in the condition before ignition. In the case of the HD-22 experiment containing water vapor in the initial condition, the simulation results show that the grey-mean absorption coefficient model has a strong influence on the temperature decrease of the flame and on the change in pressure inside the vessel.

An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine (예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구)

  • Yoon, Seung-Hyun;Lee, Doo-Jin;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased

Characteristics for Effects of Co2 Addition to Oxygen-Enriched Combustion (산소부화연소에서 Co2 첨가에 대한 연소 특성)

  • Kim, Han-Seok;Kim, Ho-Keun;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • $CO_2$ is a well-known green house gas as well as the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. Because its adiabatic flame temperature is relatively too high, existing facilities must be changed or the flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were investigated experimentally for the various oxygen-enriched ratios(OER) by the addition of $CO_2$, under constant $O_2$ flow rate. Results showed that the reaction zone was quenched and broadened as the addition of $CO_2$ was increased. The emission of NOx in flue gas was decreased as decreasing temperature in reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone was increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0%, but the composition of CO was decreased by quenching effect at OER=50% and 100%.

Effects of $CO_2$ addition to Oxygen-Enriched Combustion (산소부화연소에서 $CO_2$ 첨가에 대한 영향)

  • Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1389-1394
    • /
    • 2003
  • $CO_2$ is a well-known green house gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. But the adiabatic flame temperature is too high. So existing facilities must be changed, or the adiabatic flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were studied experimentally for the various oxygen-enriched mtios(OER) by addition of $CO_2$ under coustant $O_2$ flowrate. Results showed that the reaction zone was quenched, broadened, as addition of $CO_2$ was increased. Temperature has a large effect on the NOx emission. The emission of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0, but the composition of CO decreased by quenching effect at OER=50 and 100%.

  • PDF

Determination of Ignition Squence and Estimation of Injector Life Extension Technique in Liquid Rocket Engine (소형 액체 로켓 엔진에서의 점화 시퀀스 결정 및 인젝터 수명 연장 기법 평가)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han; Moon, Il-Yoon;Lee, Jae-Yong;Kang, Sun-Il;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyup
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2000
  • Experimental studies on determination of the supply leading time of propellants to combustion chamber have been made to stably and efficiently guarantee the ignition process with liquid rocket engine. The propellant used is a Jet A-1 as fuel and a liquid oxygen as oxidizer. Unlike impinging FOOF type of injectors are arranged radially and the designed O/F ratio is 2.34. The present experiment program also includes the stability on the quadlet type of ignitor using the triethylalumimum as an ignition source and injector life tests. Experimental results clarifies that the propellant supply through LOx leading to combustion chamber is proper for stable ignition and combustion processes based on the fuel and oxidizer manifold pressures, combustion chamber pressure, and the variation of flame length from the nozzle exit with lapse time, and shows that the leading supply time of propellants affects the engine performance little. The effect of positioning cooling holes is remarkable to protect the injector face.

  • PDF

Combustion characteristics of rice-husk according to the change of heat flux (왕겨의 heat flux별 연소특성에 관한 연구)

  • Park Eun-young;Park Duckshin;Cho Youngmin;Park Byunghyun;Lee Cheulkyu
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1190-1195
    • /
    • 2005
  • Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. Under the ideal conditions of complete combustion, the burning of biomass produces carbon dioxide and water vapor. Since complete combustion is not achieved under any conditions of biomass burning, other carbon species, including carbon monoxide, methane, non-methane hydrocarbons and particulate carbon are produced. In this study, we analyze the combustion characteristics of rice-husk, such as heat release rate, smoke production rate, the percentage variation of CO and $CO_2$, oxygen consumption rate, and mass loss under different heat fluxes (20, 50 and 70kW). As a result, at 20kW incomplete combustion is occurred so that the percentage of CO is high in initial burning and total smoke release is higher than the others. At 50kW and 70kW, the combustion behaviors is very similar except the variation of CO percentage.

  • PDF

Gas Detecting Characteristics Using Catalytic Combustion Type Gas Sensor (접촉연소식 가스 센서를 이용한 감도특성)

  • Yoon, Hun-Ju;Ko, Keel-Young;Lee, Jong-Pil;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.773-777
    • /
    • 2002
  • In this study, we analyzed the LPG and LNG sensitivity measurement and voltage variation using catalytic type gas sensor characteristics in catalytic combustion type gas detecter sensors. gas detector shall operate as intended when exposed for 24 hours to air having a relative humidity of 0~85 percent at a temperature of $20[{\mu}m]$ and humidity of 45 percent at a temperature of $-10{\sim}40[^{\circ}C]$ the gas detecter sensors are to be subjected to operation for 210 days in an area that has been detemined to be equivalent to a typical residential atmosphere with an air velocity of 50 [cm/sec]. The source of energy for a gas detector sensors employing a supplementary basic circuit is energized from a separate source of supply direct applied voltage 2.1[V], 2.2[V], 2.3[V]. As a result, it was confirmed that the relative humidity and temperature by regression each analysis, compared to the LPG characteristic graph and methane characteristics graph by a relative humidity of 0 ~ 85 [%] at a temperature range of $-10{\sim}40[^{\circ}C]$ show a similar linear pattern on the whore.

  • PDF

COMBUSTION CHARACTERISTICS OF ESTERIFIED RICE BRAN OIL AS AN ALTERNATIVE FUEL IN A DIESEL ENGINE

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.399-406
    • /
    • 2006
  • The smoke emission of diesel engines is being recognized as one of the major source of the air pollution problems. This study investigates the potential of esterified rice bran oil to reduce smoke emission as an alternative fuel for diesel engines. Because the esterified rice bran oil has approximately a 10.5% oxygen content, the combustion of the diesel engine improved and exhaust smoke decreased. Gas chromatography was used to analyze not only the total amount of hydrocarbon but also the amount of hydrocarbon components from $C_1$ to $C_6$ in the exhaust gas to determine an exact source responsible for the remarkable reduction in the smoke emission. The number of individual hydrocarbon($C_1{\sim}C_6$) as well as the total amount of hydrocarbon of esterified rice bran oil reduced significantly compared to that of hydrocarbon of diesel fuel.

Combustion Characteristics of Pre-mixed Charge Compression Ignition Engines with Natural Gas Applied to 4-Cylinders Diesel Engine (4기통 디젤기관에 적용한 천연가스 예혼합 압축착화 기관의 연소특성)

  • Jung, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.5-10
    • /
    • 2009
  • In recently, studies concerned to the diesel engine uses a natural gas as a fuel oil whose infra has been built already was approached to PCCI or HCCI with keeping a high thermal efficiency and reducing NOx and PM have been researching actively in normally single cylinder. An ignition source is required to bum the natural gas by a spark plug in gasoline engines, due to a higher auto-ignition temperature of natural gas. Then gas oil and DME were introduced as the ignition source. In this study as basic data for practical use of natural gas PCCI and HCCI engines, combustion characteristics and emission characteristics on 4-cylinders natural gas PCCI and HCCI engines with gas oil and DME as ignition sources were analyzed and the engine load range that is main object for practical use of PCCI and HCCI engines was made clearly by empirical experiment.

  • PDF

Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime (얇은 층류 화염편 영역에서 화염과 와동의 산호 작용)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF