• Title/Summary/Keyword: Combustion kinetics

Search Result 112, Processing Time 0.023 seconds

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

Impact of Internal/External Diffusion on Gasification Reaction Rate Analysis of Coal Char in High Temperatures and Elevated pressures (고온/고압 조건에서의 석탄 촤 내부 및 외부 가스화 반응효과)

  • Kim, Gyeong-Min;Kim, Jin-Ho;Lisandy, Kevin Yohanes;Kim, Ryang-Gyoon;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Reactivity of gasification defined by bouardard reaction is critical parameter in efficiency of the gasifier. In this study, char reactivity of the gasification was derived from the experiments using the intrinsic reaction kinetics model. Pressurized wire mesh heating reactor (PWMR) can produce high temperature and high pressure conditions up to 50 atm and 1750 K, respectively and PWMR was designed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. In this study, Kideco and KCH (sub-bituminous Indonesian coal) were pulverized and converted into char. Experiments used the PWMR were conducted and the conditions of the temperature and pressure were 1373~1673 K, 1~40 atm. To distinguish the pressure effect from high pressurized condition, internal and external effectiveness factors were considered. Finally, the intrinsic kinetics of the Kideco and KCH coal char were derived from $n^{th}$ order reaction rate equations.

Reaction Characteristics and Kinetics of Ni-bsed Oxygen Carrier for Chemical Looping Combustion (매체순환연소를 위한 Ni계열 산소전달입자의 반응 특성 및 반응 모델)

  • PARK, JI HYE;HWANG, RA HYUN;BAEK, JEOM-IN;RYU, HO-JUNG;YI, KWANG BOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.90-96
    • /
    • 2018
  • Reaction characteristics and kinetics of a oxygen carrier (OCN717-R1SU) for chemical looping combustion (CLC) have been investigated using TGA by changing gas concentration (10-30 vol.% $CH_4$) and reaction temperature ($825-900^{\circ}C$). Reaction rate of OCN717-R1SU increased as temperature increased and it was found that reaction is delayed at the initial reaction regime. Johnson-Mehl-Avrami (JMA) model was adopted to explain the reaction phenomenon. The activation energy (E) determined by JMA model in reduction reaction of OCN717-R1SU is $151.7{\pm}2.03kJ/mol$ and pre-exponential factor and JMA exponent were also obtained. The parameters calculated in this study will be applied in design of the reactor and operation conditions for CLC process.

Combustion Characteristics of Blended Coals with Bituminous and Sub-bituminous in Oxy-fuel Combustion Conditions (순산소연소 조건에서 역청탄과 아역청탄 혼탄의 연소특성)

  • Sung, Yon-Mo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Seung-Il;Seo, Sang-Il;Kim, Tae-Hyung;Jeong, Ji-Hwan;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • This paper focuses on the combustion characteristics of blended coals with bituminous and sub-bituminous coals under air and oxy-fuel combustion conditions. The effects of oxygen concentration and blending ratio on the combustion characteristics were experimentally investigated using a thermogravimetric analyser (TGA). Characteristic temperatures including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. As oxygen concentration increased and the presence of sub-bituminous coal, characteristic temperatures and activation energy decreased. The ignitability, reactivity and kinetics have all been greatly improved under oxy-fuel combustion conditions. Based on this, co-firing with bituminous and sub-bituminous coals under oxy-fuel combustion conditions may be suggested as an alternative method to the fuel flexibility and cost-effective power production with carbon capture and sequestration.

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

A Preconditioned Time Method for Efficient Calculation of Reactive Flow (예조건화 시간차분을 통한 화학반응유동의 효율적 계산)

  • Kim, Seong-Lyong;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.219-230
    • /
    • 1999
  • The Equations of Chemical kinetics are very stiff, which forces the use of an implicit scheme. The problem of implicit scheme, however, is that the jacobian must be solved at each time step. In this paper, we examined the methodology that can be stable without full chemical jacobian, This method is derived by applying the different time steps to the chemical source term. And the lower triangular chemical jacobian is derived. This is called the preconditioned time differencing method and represents partial implicit method. We show that this method is more stable in chemical kinetics than the full implicit method and that this is more efficient in supersonic combustion problem than the full jacobian method with same accuracy.

  • PDF

Numerical Investigations on Laminar Flame Speed of Syngas Flames at IGCC Gas Turbine Condition (IGCC 가스터빈 운전조건에서의 석탄가스 층류화염속도에 대한 기초연구)

  • Lee, Jeong-Won;Oh, Kyung-Taek;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2011
  • Coal-derived syngas has been utilized by main fuel at IGCC power plant. Research efforts for investigating the characteristics of premixed and nonpremixed flames at gas-turbine condition have been conducted. The present study has been mainly motivated to evaluate the capability of the detailed chemical kinetics to predict the syngas laminar flame speed. Special emphasis is given to the effects of pressure, temperature, syngas composition, and dilution level on the characteristics of premixed and nonpremixed flames. The predicative capability of a number of detailed mechanism for laminar flame speed is compared to experimental data. From these results, detailed kinetics of Davis et al. and Li et al. have the best conformity with the experiments in the all the case of parametric studies.

The Effect of Torrefaction Process on the Structure and Combustion of Biomass Fuel (반탄화 과정이 바이오매스 연료의 구조 및 연소성에 미치는 영향)

  • JEONG, JONG-WON;KIM, GYEONG-MIN;ISWORO, YANUAR YUDHI;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.280-291
    • /
    • 2018
  • Torrefaction is one of the methods to increase combustion calorific value and hydrophobicity of biomass. In this study, the effects of torrefaction on devolatilization, char reactivity and biomass structure were analyzed. Empty fruit bunch (EFB) and Kenaf biomass were used as fuels to be torrefied in the N2 environment at 200, 250 and $290^{\circ}C$. Devolatilization and char kinetics were analyzed by using TGA and biomass structure was investigated through petrography image. The reactivity showed different trends depending on the torrefaction temperature and biomass structure. The herbaceous biomass, Kenaf, was shown as high reactivity and thin wall structure. On the contrary, the woody biomass, EFB, had relatively low reactivity and thick wall structure.

대향분출류가 있는 맥동연소기의 비 정상 점화현상

  • 이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.259-265
    • /
    • 1997
  • An analytical study has been peformed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

A Study on Combustion Modeling of Nitramine Solid-Propellant (니트라민계 고체추진제의 연소현상에 대한 연구)

  • Yoon, Jae-Kun;Yang, Vigor
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.89-92
    • /
    • 2004
  • This work describes a model development and numerical simulation of detailed combustion mechanisms of RDX/GAP/BTIN propellants. The analysis is based on the conservation equations of mass, energy, and species concentrations for both the condensed and gas phases, and takes into account finite-rate chemical kinetics and variable thermophysical properties. The model has been applied to study the combustion wave structures and burning characteristics of RDX/GAP/BTIN propellants over a broad range of pressures. Reasonably good agreement is achieved between the calculated and measured burning rate at atmospheric pressure. But the model calculation does not result in dark zone experimentally observed.

  • PDF