• Title/Summary/Keyword: Combustion carbon

Search Result 840, Processing Time 0.029 seconds

Characterization of Potassium Based Dry CO2 Sorbents Developed for the Reduction of Side Reactions (부반응 저감 조성 K계 건식 CO2 흡수제 특성평가)

  • Jang, Young-shin;Kim, Ui-sik;Yoon, Yang-no;Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.337-341
    • /
    • 2019
  • In this study, the effects of two materials, active alumina and CaO based inorganic binder, which cause the side reaction on the K2CO3-based solid CO2 sorbents was investigated. K2CO3-based solid sorbents called KAM series was prepared by spray drying method and then measured its physical properties and CO2 sorption capacity. Among the KAM series sorbents, KAM(0.5) maintained high CO2 sorption capacity of 7.6 wt% after 3 cycle of sorption/regeneration reaction and showed very low attrition loss as low as 3.1 % which was measured by ASTM D5757-95.

A Toxicity Evaluation on the Toxic Gases Released from Interior Upholstery Fires (실내 마감재의 유독가스 방출에 관한 독성평가)

  • Ham, Sang-Keun;Kim, Hong;Gang, Yeong-Gu;Kim, Dong-Hyeon;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The toxic gases released from a fire can be classified as asphyxiants such as carbon monoxide, and irritants such as hydrochloric acid, etc. It is recognized that the combustion characteristic of interior upholstery is one of the important factors to determine the severity of indoor fires. In this study, several of the mostly used interior upholsteries including wallpaper, veneer board, curtain and floor cover, were selected to be evaluated by using the method of NES 713. The toxicity indices of the experimental samples, which indicate their toxic potentials in a fire were lowered in the order of Wallpaper (Flame Retardant) 8.5>Floor Cover(Hard) 4.8>polyurethane 4.3>Floor Cover(Soft) 3.5>PVC 2.8> Veneer Board 2.3> Floor Cover(flame retardant) 2.1>Wallpaper(Promulgation) 1.4>Curtain 0.9. It is concluded that, among all the tested upholsteries, wallpaper (flame retardant) would release the largest quantity of Toxic gases in a fire.

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment (정량적 위험성평가를 위한 배출 오염물질 분포 예측)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.

Exploration of Alternative Raw materials to Forest Biomass for Pellets (숲가꾸기 산물을 이용한 펠릿의 원료 적성 연구)

  • Kim, Seong-Ho;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Momin, Md.;Yeasmin, Shabina;Park, Hyeon-Jin;Gwak, Hye-Jeong;Kim, Gyeong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.171-178
    • /
    • 2011
  • During the last decades, global warming from the increased amount of greenhouse gases, mainly carbon dioxide has become a major political and scientific issue. Burning fossil fuels (natural gas, coal and oil) releases $CO_2$, which is also a major cause of global warming. Among the clean environment, wood pellets are considered as promising renewable fossil fuels because of clean burning characteristics, reduction of particulate and NOx emission from combustion. In Korea, more than 50% pellets have to be imported every year because of shortage of feedstocks. On the other hand, about 80% of wood pulps are greatly dependent upon overseas products due to limited forest resources. Under this situation, this study explored how efficiently we have to use forest biomass instead of total dependence on wood as raw materials for pellets.

  • PDF

The Design Conditions and the Initial Operation Results of 1 Ton/Day Class Dry Feeding Coal-Gasification System (건식 석탄공급형 1 Ton/Day급 가스화시스템 설계조건 및 시운전결과)

  • Seo, Hai-Kyung;Chung, Jae-Hwa;Ju, Ji-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.4
    • /
    • pp.352-359
    • /
    • 2009
  • KEPRI is developing a Korean type coal-gasification system and the scale is 20 ton/day. Prior to this pilot plant, a 1 ton/day class gasification system will be used for pre-testing of several coal types. This paper introduces the configuration and design conditions of this 1 ton/day class system, presenting the gas/coal ratio, oxygen/coal ratio, cold gas efficiency, CFD analysis of gasifier, and others. The existing combustion furnace for residual oil was retrofitted as a coal gasifier and a vertical and down-flow type burner was manufactured. Ash removal is carried out through a water quencher and a scrubber following the quencher, and the sulfur is removed by adsorption in the activated carbon tower. The gas produced from the gasifier is burned at the flare stack. In this paper, the results of design conditions and initial operation conditions of I ton/day gasification system are compared together.

Troubleshooting of Combustor for Auxiliary Power Unit during Engine/System Test (엔진 및 체계시험 중 발생한 보조동력장치 연소기 문제해결과정)

  • Lim, Byeungjun;Park, Heeho;Lee, Seungjoon;Sung, Okseok
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • Although the APU combustors were developed successfully, it could face many unexpected hardships in an engine or a system operating under the severe environments. But, it is not easy to change the combustion field or combustor structure at the engine/system development stage. So we must suggest practical ways to optimize the value quantitatively by engine test and flow analysis, and verify those by the cyclic test. This paper describes reverse-annular type combustor troubleshooting processes for verifying and settling of the problems and issues occurred in various engine and system operation tests by experiment and analysis.

A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle (차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구)

  • Lee, Kil-Sung;Yang, In-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC (EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구)

  • Lee, Byung-Ho;Yi, Chung-Seub;Kim, Bo-Han;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.