• Title/Summary/Keyword: Combustion carbon

Search Result 840, Processing Time 0.039 seconds

[$CO_2$] Emission from Carbon of Marine Fuel Oil in New Ships (신조선에서 연료탄소로부터의 $CO_2$ 배출 특성)

  • Jang Mi-Suk;Kim Eun-Chan;Moon Il-Sung;Lee Jae-Woo;Kwon Oh-Sin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.148-153
    • /
    • 2006
  • This study dealt with the measurement of exhausted gas concentration, the estimation of a combustion efficiency, and the review of IMO indexing. We concentrated on establishing the basic data to take a counterplan coping with $CO_2$ regulations. The average combustion efficiency was 98% in shop test of new engines and 96.5% in sea trial test of new ships, respectively. It would become lower for the old engine or/and ship. High combustion efficiency results in high $CO_2$ emission and low combustion efficiency results in high emission of incomplete combustion products. The efficient method reducing $CO_2$ emission without an increase in noxious air pollutants would be the development of a substitute fuel and the fuel-efficient and economical engine, and the fair play among shipping agencies in a ship speed. In reviewing of IMO indexing, it is necessary to begin by analyzing the carbon content of a marine fuel for a precise estimates.

  • PDF

A Study on Combustion Characteristics in terms of the Type of Fuel Supply Device (Feeder) of a Wood Pellet Boiler (목재펠릿보일러의 연료공급 장치의 형태에 따른 연소특성에 관한 연구)

  • Choi, Yun Sung;Euh, Seung Hee;Oh, Kwang Cheol;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • This study reports the combustion characteristics, such as burner temperature and the concentration of exhausted gas ($O_2$, $CO_x$, $NO_x$) due to the different types and pitches of the fuel supply feeder of the wood pellet boiler. The 1st grade wood pellets composed of mainly larch have been used for the experiment. In case of using the spring feeder, mean temperature of burner was approximately $821.76^{\circ}C$, and the mean concentration of oxygen, carbon monoxide, carbon dioxide and nitrogen oxide were approximately 8.88%, 93.35ppm, 12.15% and 139.83 ppm, respectively. The test result with the spring feeder was shown to approach the condition of complete combustion compared to that of a screw feeder and were in good agreement with authentication judgement standard. Furthermore, the combustion efficiency was improved according to the growth of screw pitch. The control of air flow rate from the blower and ventilator is needed to achieve the complete combustion.

Parkinson's Disease among Firefighters : A Focused Review on the Potential Effects of Exposure to Toxic Chemicals at the Fire Scene (리뷰 : 화재현장에서 노출될 수 있는 화학적 유해물질과 파킨슨병 간의 관련성)

  • Ye, Shinhee;Kim, Hyunjoo;Jeong-Choi, Kyunghee;Kim, Jieun E.;Park, Shinwon;Lee, Yumin;Ha, Eun-Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Previous studies have found that firefighters have a tenfold higher prevalence of Parkinson's disease (PD) compare to the general population. Firefighters are constantly exposed to various occupational hazards including toxic chemicals of fire residue and the toxic chemicals can effects development and progression of PD. Nevertheless, there were no studies about the association between exposure to chemical byproducts of combustion and the development of PD among firefighters. Thus the aim of this study is to look into existing researches regarding the effect of chemical byproducts of combustion on the development of PD. An extensive literature search was conducted to identify harmful chemical components of smoke and fire residue, using the PubMed database during November of 2016. We searched for relevant articles by combining several keywords that contained "Parkinson's disease" and each of the different toxic chemicals, yielding a total of 1401 articles. After applying the selection criteria, 12 articles were chosen. Chemical substances reported to have a harmful effect on PD, in at least one article, were carbon monoxide, toluene, manganese and lead. Carbon monoxide and metal substances including manganese and lead were found to be associated with an increased PD risk in more than two articles. There was a heightened risk of PD in firefighters due to exposure of chemical byproducts of combustion including carbon monoxide, toluene, manganese and lead. However, to the best of our knowledge, to support this result we need more systematic epidemiological studies about these risk factors of PD among firefighters. In addition, further studies for the effects of prolonged exposure to toxic fire residue on the development and progression of PD in firefighters are needed.

Numerical Study of Combustion Characteristics by Pressure and Oxygen Concentration in Counter-Flow Diffusion Flame Model (대향류 확산 화염 모델에서의 압력 및 산소분율에 따른 연소 특성 변화에 관한 수치해석 연구)

  • Park, Jinje;Lee, Youngjae
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.93-103
    • /
    • 2021
  • As the seriousness and necessity of responding to climate change and reducing carbon emissions increases, countries around the world are continuing their efforts to reduce greenhouse gases. Among various efforts, research on CCUS, capturing and utilizing carbon dioxide generated when using carbon-based fuels, is actively being conducted. Studies on pressurized oxy-fuel combustion (POFC) that can be used with CCUS are also being conducted by many researchers. The purpose of this study is to analyze basic information related to the flame structure and pollutant emissions of pressurized oxy-fuel combustion. For this, a counter-flow diffusion flame model was used to analyze the combustion characteristics according to pressure and oxygen concentration. As the pressure increased, the flame temperature increased and the flame thickness decreased due to a reaction rate improvement caused by the activation of the chemical reaction. As oxygen concentration increased, both the flame temperature and the flame thickness increased due to an improvement to the reaction rate and diffusion because of a change in oxidizer momentum. Analyzing the related heat release reaction by dividing it into three sections as the oxygen concentration increased showed that the chemical reaction from the oxidizer side was subdivided into two regions according to the mixture fraction. In addition, the emission index of NO classified according to the NO formation mechanism was analyzed. The formation trend of NO according to each analysis condition was presented.

A Study on the Calculation Model for the Emissivities of Carbon Dioxide and Water Vapor

  • Kim, Chong-Bo;Hur, Byung-Ki;Kim, Nam-Jin;Seo, Tae-Beom
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.248-258
    • /
    • 2001
  • The main mode of heat transfer of combustion gases at high temperature is thermal radiation of the participating gases, which are mainly carbon dioxide and water vapor. Therefore, the information of the emissivities of carbon dioxide and water vapor would be very important in the thermal performance analysis of a furnace. In this study, an exponential model for the emissivities of carbon dioxide and water vapor is derived as a function of the product of the partial pressure and characteristic length and a polynomial of reciprocal of temperature. Error analysis of the calculated values from the present model is performed for the temperature ranges of 555.6∼2777.8K and the partial-pressure-length product ranges of 0.09144∼609.6 cm-atm. For carbon dioxide, the difference between the values from the present model and the Hottels chart is less than 2.5% using a polynomial in 1/T of degree of 4. For water vapor, the model can predict the emissivity within 2.5% difference using a polynomial in 1/T of degree of 3.

  • PDF

Reduction Characteristics of Oxygen Carrier Particles for Chemical-looping Combustor with Different Fuels (매체순환식 가스연소기용 산소공여입자들의 연료별 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2009
  • Reduction reactivity and carbon deposition characteristics of three oxygen carrier particles(OCN01, OCN02, OCN03) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all particles, the maximum conversion, the oxygen transfer capacity, and the degree of carbon deposition increased as the reactive carbon contents increased. The reduction rate and the oxygen transfer rate increased as the moles of required oxygen per input gas increased. The change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels can be explained consistently by using parameters such as the reactive carbon contents and the moles of require oxygen per input gas.

A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics (암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰)

  • Seung-Jun Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.125-136
    • /
    • 2023
  • Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.

The Combustion Characteristics of Agricultural Diesel Engine using Biodiesel Fuel(Ester of Rice Bran Oil) (바이오디젤유(미강유 에스테르)를 이용한 농업용 디젤기관의 연소 특성)

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2003
  • Biodiesel fuel as an alternative fuel for diesel engine has a great possibility to solve the problems such as air pollution. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice bran oil as an alternative fuel for diesel engines was investigated in agricultural diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without any increase of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable and an environmentally Innocuous fuel for diesel engine.

A Study on Correlation of Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (II);Correlation of Chemical Structure and Cetane Number (초음파 개질 경유의 연료특성과 연소특성의 상관성에 관한 연구 (II);화학구조와 세탄가의 상관관계)

  • Lee, Byoung-Oh;Kim, Yong-Kuk;Kwon, Oh-Sung;Choi, Doo-Seuk;Ryu, Jeong-In
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.163-170
    • /
    • 2002
  • The main objective of this study is to investigate the correlation of chemical structure and cetane number of reformed diesel fuels by ultrasonic irradiation. In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic irradiation, $^1H-NMR$ was used. From the study, following conclusive remarks can be made. 1) BI(=Branch Index), aromatics percentages, and $H_{\alpha}(={\alpha}-methyl$ functional group) of the reformed diesel fuels by ultrasonic irradiation decreased more than those of the conventional diesel fuel. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than those of the conventional diesel fuel. 3) Using predicated equation of cetane number caculated from carbon type structure is more reasonable than that caculated from hydrogen type distribution 4) BI, aromatics percentages, and $H_{\alpha}$ on both of conventional fuel and reformed diesel fuels by ultrasonic irradiation are inversely proportional to cetane number on these fuels.

  • PDF