• 제목/요약/키워드: Combustion System

검색결과 2,159건 처리시간 0.029초

EGR 시스템을 적용한 린-리치 연소시스템의 공해물질 배출 특성 연구 (The Pollutant Emissions Characteristics of Lean-Rich Combustion System with Exhaust Gas Reciculation)

  • 오휘성;유병훈;김종현;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.233-234
    • /
    • 2014
  • Lean-rich combustion system was composed both fuel-lean and fuel-rich flame at once. Each of fuel-lean and fuel-rich combustion types to reduce Thermal $NO_x$ and obtain flame stability. This study was confirmed a stability of flame through variation of flame shape that EGR was applied and compared the emission characteristics of EGR lean-rich combustion system to normal premixed combustion system at real condition to review a utility of the system. As a result, emission index of $NO_x$ and CO generated from EGR lean-rich combustion system at global equivalence ratio is 0.85 just half level($NO_x$ 0.31 g/kg, CO 0.08g/kg) compared to the amount generated from normal premixed combustion system at equivalence ratio is 0.78.

  • PDF

compact 축열 버너 개발 연구 (A Study on the Compact Regenerative Burner Development)

  • 동상근;이은경;양제복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.248-255
    • /
    • 2004
  • For the compactness of regenerative combustion, self regenerative combustion and embedding regenerator inside furnace are proposed. The Self Regenerative burner system was developed to enhance thermal efficiency and Low Nox emission. In the twin regenerative system, two burner heads are generally used for preheating and exhausting combustion mode. But self regenerative burner system use only single nozzle body for regenerative combustion. Also two kind of regenerator, internal and external type, were designed to operate conveniently in both large and small furnace. According to test result, the self regenerative combustion system gives strong internal exhaust gas recirculation that reduce NOx emission significantly. NOx was measured as 50ppm(5% O2, 1290C furnace temperature). Also it is found that the fuel saving rate due to the self regenerative burner system reach to 30-40%. Thus it can be concluded that self regenerative mild combustion system appears to provide a reasonable regenerative burner for compactness and high performance as compared with conventional twin regenerative burner system. Also in the RT Application , compact twin regenerative burner was developed with the help of embedding regenerator inside furnace.

  • PDF

가시화엔진을 이용한 연소 및 라디칼 특성에 관한 연구 (A Study on Combustion Visualizations and Radical Characteristics using Optically Accesible Engine)

  • 최수진;장영준;전충환
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.39-47
    • /
    • 1999
  • A combustion flame visualization system, which is used as an engine diagnostics tool, was developed in order to understand the combustion reaction mechanism in the development stage for S.I. engines. The measurement system consists of an I-CCD camera and a computer-aided image processing system. By using optically accessible engine system, the flame structure was analyzed from the acquired graylevel image and the direction of flame propagation (shape of flame) has been measured to understand combustion phenomena. And combustion radical which involves combustion information were measured. As a result, strong relation between combustion radicals intensity ratio and air excess ratio was found.

  • PDF

압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구 (A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.

순차식 촉매연소 시스템 (Sequential Catalytic Combustion System)

  • 유상필;송광섭;류인수;정남조
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.153-158
    • /
    • 2003
  • Catalytic Combustion used to be applied to specific conditions because of the characteristics different from flame combustion. However, many researches are focused on widening the applicant range of catalytic combustion with the competences of catalytic combustion. The development of many catalytic combustion appliances is one of the trials to overcome the restrictions of reaction and maximize the merits. In this research, past developments of appliances are depicted and new conceptual system will be introduced - sequential system. Sequential catalytic combustion system is composed of units - existing catalytic heat exchangers. This system is performed with parallel in composition and serially in operation. First, the burden of the preheating can be dramatically reduced. Second, stable operation control is expected. Lastly, Capacity expansion is flexible.

  • PDF

중유보일러용 3단 저NOx 버너의 연소특성 실험 (Experimental study on the combustion characteristics of 7 MW-3 air stages low NOx combustion system for a heavy-oil firing boiler)

  • 김혁주;박병식;이승수;김종진;최규성
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.244-249
    • /
    • 2004
  • Experiments were performed to investigate the characteristics of combustion of 7MW-3 air stages combustion system for a heavy oil firing boiler. Several fuel nozzles were developed for the purpose of lowering pollutions in another institute and ${\Phi}$-jet nozzle among them was equipped to the combustion system. A variety of combustion phenomena were observed as air stage ratio, air fuel ratio and load are changed for each nozzle. Main combustion characteristics are shape of flame, NOx and CO generations, smoke scale number. Through lots of adjustments, the combustion system reaches such goals as the low NOx of 160 ppm, CO of 300 ppm corrected at $O_2$ of 4% and dust of 150 mg/Sm3.

  • PDF

A Combustion Instability Analysis of a Model Gas Turbine Combustor by the Transfer Matrix Method

  • Cha, Dong-Jin;Kim, Jay-H.;Joo, Yong-Jin
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2946-2951
    • /
    • 2008
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use the advantages of not only the transfer matrix method but also well-established classic control theories. The approach is applied to a simple gas turbine combustion system to demonstrate the validity and effectiveness of the approach.

  • PDF

연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발 (Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성 (Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM)

  • 김재휘;김진환;박권하
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

저온연소엔진 실용화를 위한 연소전략에 대한 연구 (Investigation of Combustion Strategy for Commercialization of Low Temperature Diesel Combustion Engine)

  • 심의준;한영덕;신승협;김득상;권상일
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.120-127
    • /
    • 2014
  • Robustness and controllability are the key factors in internal combustion engine commercialization. This study focuses on the combustion strategy to commercialize the low temperature diesel combustion technology. Various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. To find the best feasible LTC strategy, emission level, fuel consumption and combustion safety during the combustion mode change were considered. Experiments were carried out under various engine operating conditions; engine speed & load, EGR level, injection timing. Finally, this study suggests realizable LTC combustion strategy; moderate EGR level and slight early injection are possible to considerably lower PM, NOx emission and expand LTC operating range up to 50% load without CO and HC emission.