• Title/Summary/Keyword: Combustion Radical

Search Result 147, Processing Time 0.021 seconds

A Study on the Rapid Bulk Combustion of Premixture Using the Radical Seeding

  • Lee, Myung-Jun;Kim, Jong-Youl;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1623-1629
    • /
    • 2004
  • The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAI) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.

A Study on the Characteristics of Methane-Air Premixture Combustion and Combustion Radicals (II) (밀폐 연소실 내의 메탄-공기 예혼합기의 연소 및 라디칼 특성에 관한 연구(II))

  • Choe, Su-Jin;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.602-614
    • /
    • 1997
  • In order to evaluate the effects of equivalence ratio, initial pressure and temperature on the laminar flame propagation process, and combustion radicals characteristics, experimental approaches are carried out in methane-air premixture using a constant volume chamber. Local and average radical intensities were measured to determine the time and spatial correlations between each radicals; C $H^{*}$(431 nm), $C_{2}$$^{*}$ (517 nm) and O $H^{*}$(309 nm) . The results are showed that two kinds of equation were proposed for the cases of continuous flame and intermittent flame type to evaluate actual equivalence ratio using relative intensities with each radicals. Both equations were agreed with actual equivalence ratio within 10% errors range. And schlieren photo and CCD image were compared with flame sizes at equivalence ratio 1.0.o 1.0.

Effects of Combustion Atmosphere Pressure on Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 연소 분위기 압력 영향 연구)

  • Lee, Kee-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.853-862
    • /
    • 2006
  • The present study is numerically investigated the flame structure of non-premixed counterflow jet flames using the laminar flamelet model Detailed flame structures with the fuel composition of 40% CO, 30% $H_2$. 30% $N_2$ and an oxidizer composition of 79% $N_2$ and 21% $O_2$ in a non-premixed counterflow flame are studied numerically. This study is aimed to investigate the effects of axial velocity gradient and combustion atmosphere pressure on flame structure. The results show that the role of axial velocity gradient on combustion processes is globally opposite to that of combustion atmosphere pressure. That is, chemical nonequilibrium effects become dominant with increasing axial velocity gradient, but are suppressed with increasing ambient pressure. Also, the flame strength is globally weakened by the increase of axial velocity gradient but is augmented by the increase of ambient pressure. However, flame extinction is described better on the basis of only chemical reaction and in this study axial velocity gradient and ambient pressure play a similar role conceptually such that the increase of axial velocity gradient and ambient pressure cause flame not to be extinguished and extend the extinction limit, respectively. Consequently it is suggested that a combustion process like flame extinction is mainly influenced by the competition between the radical formation reaction and the third-body recombination reaction.

OH-and CH-Radical Chemiluminescence Characteristics in the Spray Combustion of Ultransonically Atomized Kerosene (초음파에 의해 무화된 케로신 분무연소에서의 OH 라디칼 및 CH 라디칼 자발광 특성)

  • Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.72-79
    • /
    • 2018
  • An experimental study was performed to investigate the chemiluminescence characteristics in the spray combustion of ultransonically atomized kerosene. The radical intensity of the spray flame was measured using an ICCD camera and the amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion. Fuel consumption increased linearly with the increase in carrier-gas flow rate, and typical group combustion, which is a characteristic of spray combustion, was observed. It was found from the analysis of chemiluminescence that the maximum emission intensities of OH and CH radicals decrease, and they move downstream resulting in the increase in a vivid reaction zone as the spray flow rate increases.

Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample (연소중 미분탄의 발광 분석 및 입자 채집 관찰)

  • Kim, Dae-Hee;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2010
  • Combustion behavior of pulverized coal particles in a post-combustion gas reactor was investigated. Radiation emission from coal particles were analyzed by direct photograph and $CH^*$ radical chemiluminescence intensity. Coal particles were sampled during the combustion and were observed by scanning electron microscopy (SEM) and cross section micrograpy technique. Two coal types(one bituminous and one subbituminous coals typically used in the Korean power plants) were tested at typical combustion environment. Gas flow conditions were controlled to represent temperature and oxygen concentration. Experimental data were discussed along with conceptual descriptions of pulverized coal combustion, where particle heat-up, release and combustion of volatiles, and char combustion were sequentially progressed.

Effect of pressure and stochiometric air ratio on flame structure and NOx emission in gas turbine dump combustor with double cone burner (이중원추형 모형연소기에서 압력과 공기비에 따른 화염 구조 및 NOx 배출특성)

  • Nam, Hyun Su;Han, Dong Sik;Kim, Gyu Bo;Jeo, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.177-179
    • /
    • 2012
  • This work presents an experimental investigation to study $NO_x$ emissions under stoichiometric air ratio and elevated pressure (2~10bar) in a High Press Combustor(HPC) equiped with double cone burner which was designed by Pusan Clean Coal Center(PC3). Exaust gas temperature and $NO_x$ emissions were measured at the end of the combustion chamber. The $OH^*$ radical concentration and $NO_x$ emission were decreased as a function of increasing ${\lambda}$ generally. On the other hand, $OH^*$ radical concentration and $NO_x$ emission increased with ${\lambda}$ pressure of the combustion chamber. $NO_x$ emissions which were governed by thermal $NO_x$, were highly increased under the elevated pressure, but slightly increased at sufficiently low fuel concentrations (${\lambda}>2.0$).

  • PDF

Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans (Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, Ki-Bal;Kim, Dong-Il;Oh, Sang-Heun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

Effect of Injection Pressure of Water-in-Oil Emulsified Fuel on the Combustion Characteristics (유화연료의 분사압력이 연소특성에 미치는 영향)

  • Hwang, S.H.;Bae, H.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.38-45
    • /
    • 2003
  • This study was carried on the combustion characteristics of a pure light oil and emulsified fuels at high-pressure injection in a spray combustion installation, The volume fractions of water in an emulsion were varied up to 30% and the injection pressures were 7.5, 100, 200, and $300kg_f/cm^2$. The concentrations of NOx and the average temperatures of flame were measured. And Images of OH radical using ICCD camera and instantaneous schlieren photography of flames were photographed. It was found that the temperature distribution of axial distance in the emulsified fuels was increased in the upstream and decreased in the down stream. The temperature distribution of radial distance was high at the peripheral regions of the spray in the upstream and at the central regions of spray in the downstream, The intensity of OH radical was denser at the water content 10% than at the pure light oil over the injection pressure $200kg_f/cm^2$.

  • PDF

Combustion Characteristics of a Turbulent Diffusion Flat Flame According to Oxygen Enriched Concentration of Combustion Air (연소공기의 산소부화농도에 따른 난류확산 평면화염의 연소특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by improving the burning rate and by increasing the flame temperature. Flame figures, OH radical intensities, temperature distributions and emissions concentration were examined according to oxygen enriched concentration(OEC) in a turbulent diffusion flat flame. As long as the oxygen enriched concentration was increased, the length and volume of the flat flame was decreased while OH radical intensity was raised and the flame temperature was increased. However, RMS of the fluctuating temperature was decreased, and more homogeneous temperature field was formed. Thermal NO also was increased with increase of oxygen enriched concentration, but CO was decreased due to the increase of chemical reaction rate.

A Numerical Study on Stratified Charge Formation and Combustion Processes (성층급기 연소현상에 관한 수치적 연구)

  • Lee, Suk-Young;Huh, Kang-Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.86-96
    • /
    • 2007
  • A direct-injection stratified-charge(DISC) engine has been considered as a promising alternative in spite of high unburned hydrocarbon emission levels during light load operation. In this paper investigation is made to characterize formation and combustion processes of stratified mixture charge in a simple constant volume combustion chamber. Both experimental and numerical analyses are performed for fluid and combustion characteristics with 3 different induction types for rich, homogeneous and lean mixture conditions. The commercial code FIRE is applied to the turbulent combustion process in terms of measured and calculated pressure traces and calculated distributions of mean temperature, OH radical and reaction rate. It turns out that the highest combustion rate occurs for the rich state condition at the spark ignition location due to existence of stoichiometric mixture and timing.