• Title/Summary/Keyword: Combustion Pressure

Search Result 2,198, Processing Time 0.027 seconds

A Study on the Control Characteristics of Thrust Vector Control Actuation System for Movable Nozzle of Solid Motor (고체모터 가동노즐 추력벡터제어용 구동장치시스템의 제어특성 연구)

  • Min, Byeong-Joo;Lee, Hee-Joong;Park, Moon-Su;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The motion of flexseal bearing for movable nozzle has inherent nonlinear characteristics due to floating rotational center and compression by combustion pressure of solid motor. To perform precise attitude control in spite of these characteristics, the TVC actuation system requires counter potentiometer as an extra position feedback sensor of movable nozzle to form a compensated control loop. The prototype TVC actuation system, test equipments and compensated controller are newly designed, manufactured and tested in consideration of counter potentiometer. On the basis of integration test, the inherent characteristics of movable nozzle and control characteristics of its TVC actuation system are analyzed and summarized in this paper.

A Experimental Study of Oxidation Kinetics for a Sub-Bituminous Coal Char (아 역청탄 촤 산화 반응속도론에 관한 실험적 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Lee, Chuen-Sueng;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.239-246
    • /
    • 2009
  • A fundamental investigation has been conducted on the combustion of single particle of a sub-bituminous coal char burning at different temperatures and residence times. The lab-scale test setup consisted of a drop tube furnace where gas temperatures varied from $900^{\circ}C$ to $1400^{\circ}C$. A calibrated two color pyrometer, mounted on the top of the furnace, provided temperature profiles of luminous particle during a char oxidation. An amount of char mass reacted during the reaction is measured with thermogravimetry analyzer by using an ash tracer method. As a result, mass and area reactivity as well as reaction rate coefficients are determined for the char burning at atmospheric pressure condition.

Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor (3 kW급 매체순환식 가스연소기의 고체순환특성)

  • Ryu, Ho-Jung;Park, Jaehyeon;Kim, Hong-Ki;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1057-1062
    • /
    • 2008
  • To overcome disadvantages of conventional two interconnected fluidized beds system, a novel two-interconnected fluidized bed process has been adopted to 3kW chemical-looping combustor. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables such as gas velocity through the solid injection nozzle, fluidizing velocity, solid height, geometry of solid intake hole, bed temperature on solid circulation rate have been investigated in a 3kW chemical-looping combustor. The solid circulation rate increased as the solid height and the opening area of solid intake holes increased. The effect of the fluidizing velocity and the bed temperature were negligible. Moreover, long-term operation of continuous solid circulation up to 50 hours has been performed to check feasibility of stable operation. The pressure drop profiles in the bubbling beds and the downcomers were maintained steadily and solid circulation was smooth and stable.

Crystallization of Hydrazinium Nitroformate(HNF) as Eco-friendly Oxidizer (친환경 산화제 HNF 결정화 연구)

  • Kim, Jina;Kim, Min Jun;Min, Byoung Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.76-82
    • /
    • 2016
  • Recently, environmental sustainability of the transitional explosives and propellants is an issue of growing importance in energetic materials. For examples, ammonium perchlorate(AP) as an solid propellants oxidizer could create a poisonous gas and atmospheric pollutions, such as HCl. Among the several oxidizers, hydrazinium nitroformate(HNF) is an effective candidate substance for eco-friendly oxidizer, which has high density, pressure index, and less smog generating property during combustion for the thrust control system. This study was controlled the size distribution and shapes through various conditions. Length and diameter ratio(L/D) of crystals has below 1 : 3, and the particle size was two types of $200{\mu}m$ and $50{\mu}m$.

Analysis of the Influence of CO2 Capture on the Performance of IGCC Plants (가스화 복합화력발전 플랜트에서 CO2제거가 성능에 미치는 영향 해석)

  • Cha, Kyu-Sang;Kim, Young-Sik;Lee, Jong-Jun;Kim, Tong-Seop;Sohn, Jeong-L.;Joo, Yong-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In the power generation industry, various efforts are needed to cope with tightening regulation on carbon dioxide emission. Integrated gasification combined cycle (IGCC) is a relatively environmentally friendly power generation method using coal. Moreover, pre-combustion $CO_2$ capture is possible in the IGCC system. Therefore, much effort is being made to develop advanced IGCC systems. However, removal of $CO_2$ prior to the gas turbine may affect the system performance and operation because the fuel flow, which is supplied to the gas turbine, is reduced in comparison with normal IGCC plants. This study predicts, through a parametric analysis, system performances of both an IGCC plant using normal syngas and a plant with $CO_2$ capture. Performance characteristics are compared and influence of $CO_2$ capture is discussed. By removing $CO_2$ from the syngas, the heating value of the fuel increases, and thus the required fuel flow to the gas turbine is reduced. The resulting reduction in turbine flow lowers the compressor pressure ratio, which alleviates the compressor surge problem. The performance of the bottoming cycle is not influenced much.

Risk Assessment of Fire and Explosion of Methane (메탄의 화재 및 폭발 위험성 평가)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.1-7
    • /
    • 2005
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosive limit, flash point, autoignition temperature, minimum oxygen concentration, heat of combustion etc.. Explosive limit and autoignition temperature are the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limit and autoignition temperature of methane fur LNG process safety were investigated. By using the literatures data, the lower and upper explosive limits of methane recommended 4.8 vol$\%$ and 16 vol$\%$, respectively. Also autoignition temperatures of methane with ignition sources recommended $540^{\circ}C$ at the electrically heated cruicible furnace (the whole surface heating) and recommended about $1000^{\circ}C$ in the local hot surface. The new equations for predicting the temperature dependence and the pressure dependence of the lower explosive limits for methane are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

An Experimental Study on the Flame Dynamics in Ducted Combustor (덕트형 연소기에서 화염의 동특성에 관한 실험적 연구)

  • Jeong, Chanyeong;Kim, Taesung;Song, Jinkwan;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.121-131
    • /
    • 2013
  • The characteristics of flame dynamics occurring near the bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Measurements of chemiluminescence with high speed camera and PIV were performed for visualization of flame structure. Flashback occurs due to the change of pressure gradient in the combustor, and the flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. When the flame goes over the bluff body, an unusual flame structure occurs at the front of the bluff body. Re-stabilization takes place as the flame moves downstream of the combustor. This process is supported by a strong vortex structure behind the bluff body.

The Study on the Synthesis of Triazole Derivatives as Energetic Plasticizer (트리아졸 계열의 에너지 가소제 합성 연구)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • Most of propellants that is used widely in the world release toxic gases such as methane gas and carbon dioxide during combustion which are noxious to the environment. This study established a synthetic process of a high nitrogen containing derivative of triazole, 4,5-bis(azidomethyl)-methyl-1,2,3-triazole (DAMTR), which can be applied as energetic plasticizer to environmental concerns. Also, the compound was characterized by NMR, IR spectroscopy, and physical properties such as glass transition temperature, melting point, decomposition temperature, density, impact sensitivity, viscosity and volatility were measured. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMTR were calculated using Gaussian 09 and EXPLO5 programs.

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

The Experimental Study on the Lift-off Height due to Momentum Ratio in Swirl-Coaxial Injector (2유체 동축인젝터의 공급 운동량비가 화염부상거리에 미치는 영향에 관한 실험적 연구)

  • Moon, I.Y.;Kim, Y.;Park, H.H.;Kim, S.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The experimental study on the lift-off height of diffusion flames was conducted to investigate the damage of swirl-coaxial injector used in $GO_2$/kerosene rocket engine during initial stage of ignition. To investigate the causes of damage and to prevent further damage of the injector, experimental injector was designed and hot fire tests were performed with varying propellant momentum ratio($\frac{Momentum of {GO_2}}{Momentum of Kerosene}$) from 1 to 12. In experimental coaxial injector, kerosene is sprayed from the central nozzle with swirl and $GO_2$ sprayed around the kerosene nozzle in the direction parallel to the axis of combustion chamber. Chamber pressure are close to the atmospheric condition. Lift-off height was measured by still images from camcoder and average values were used as data.

  • PDF