• Title/Summary/Keyword: Combustion Phenomena

Search Result 354, Processing Time 0.027 seconds

3D Unsteady Numerical Analysis of a Slab Heater for Steel Mill Company (제철소용 가열로 내전열과 유동장의 3차원 비정상 해석)

  • Han, Sang-Heon;Kang, Sang-Hun;Kim, Chang-Young;Kim, Man-Young;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.67-74
    • /
    • 2004
  • Numerical analysis code has been developed for investigating the combustion characteristics in a slab heater of a steel mill company. Unsteady full 3-Dimensional behaviour can be predicted with the code. Premixed flame model is adopted for combustion phenomena. And eddy dissipation model is used for turbulent flow and non gray FVM method for radiation. Slab movement can be fully traced from entrance into heater until it's exit and computation is performed during that period. Code was validated by comparing the calculation results with experimental ones for the bench scale heater.

  • PDF

The behavior of swirl and tumble ratio in the combustion chamber of 4-valve engine with valve positions (밸브위치에 따른 4밸브 엔진 연소실 내부의 스월비와 텀블비의 거동)

  • Kim, Sung-Joon;Lee, Chon-Sik;Chun, Bong-Jun;Lee, Yong-Il
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.51-57
    • /
    • 1999
  • This research has an object to find out how the position of inlet valve influence swirling and tumbling of turbulence inside the combustion chamber of 4 valve engine. The computational analysis of three dimensional complicated turbulence flow in the cylinder is done by the KIVA-3V program to carry out this object. One use 6 valve positions with the bowl type of piston cavity. The swirl ration and the tumbling ratio of flow filed are evaluated quantitatively to find out how each valve position influence flow phenomena in the combustion chamber during the intake and compression processes.

  • PDF

Comparison between heavy oil combustion test and numerical analysis of combustion phenomena subject to changes in injection characteristics (분무특성에 따른 중유연소 수치해석의 결과와 실험과의 비교)

  • Lee, S.S.;Kim, H.J;Kim, J.J.;Choi, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.338-343
    • /
    • 2003
  • Computations were performed to investigate the spray characteristics of the twin fluid nozzle in three stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to estimate mean droplet size, initial velocity and spread factor of the nozzle through comparison between experiments and numerical analyses. Air stage ratio is 2:4:4 by mass, and O2 in exhaust gas is about 4 % by volume. Here, the agreement between the experiment and numerical analyses is evaluated by NOx generation. Spray characteristics will be linearly interpolated between fuel consumption rate l20L/h and 240 L/h.

  • PDF

Reduction Characteristics of AC Flashover Voltage by Combustion Flames under Atmospheric Conditions (대기중 연소화염에 의한 교류 플래시오버전압의 저하 특성)

  • 김인식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1041-1047
    • /
    • 2001
  • In this paper, reduction characteristics of the ac flashover voltage in the horizontal air gap of sphere-sphere/needle-needle electrode system were investigated when the combustion flame was present near the high-voltage electrodes. The voltage and current waveforms were measured, when the flashover is occurred, in order to examine the flashover polarity by flame. The reduction characteristics of ac flashover voltage were discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that changed by the corona wind and coulomb\`s force. As the results of an experimental investigation, It was found that the reduction of flashover voltages in sphere-sphere system, in comparison with the no-flame case, are 79.9 [%] for k=0, 82.9 [%] for k=0.5, 87.5 [%] for k=1.0, 85.0 [%] for h=0 [cm], 40.8 [%] for h=5 [cm] and 28.2 [%] for h=9 [cm] when ac voltage is applied.

  • PDF

Analytic model to determine the unknown parameters of JWL++ rate equation (JWL++ 반응속도식의 미정상수 결정을 위한 화약의 이론적 모델)

  • Kim, Bohoon;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.283-286
    • /
    • 2012
  • The analytical model determining the unknown parameters of reaction rate equation which is necessary to simulate the combustion phenomena of energetic materials is proposed. The relationship between detonation velocity and size effect of energetic materials is derived from simplified JWL++ model. Theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, b. When b=0.8, the behavior of HANFO gunpowder is in the form of concave-up and ANFO explosives has the concave-down form in case of b=1.5. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

  • PDF

ANALYSIS OF HEAT LOSS IN A CONSTANT VOLUME MICRO COMBUSTOR (초소형 정적 연소실의 열손실 분석)

  • Na, Han-Bee;Lee, Dae-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.231-235
    • /
    • 2002
  • A theoretical and experimental study on the combustion process in a constant volume micro combustor is described. Unlike in a macro scale constant volume combustor, the heat loss to the wall plays a major role in flame propagation in a micro micro combustor. In order to analyze the effect of heat loss on combustion phenomena, pressure transition from ignition was measured. A number of cylindrical micro combustors with different diameter and depth were used for experiment to study the effect of length scales and shape factor. The diameter of combustor ranged from 7.5mm to 22.5 mm and the height of cylinder was from 1mm to 4mm. Initial pressure was also varied for the experiment. The diagnostic methods were severely limited due to the size of the apparatus and uncertainties of certain quantities to be measured in a small-scale environment. An analytical method to derive physical quantities that are essential for performance prediction from the pressure measurements is described.

  • PDF

Skeletal Chemical Mechanisms for a Diesel Fuel Surrogate by the Directed Relation Graph(DRG) (직접 관계 그래프(DRG)를 이용한 디젤 연료의 상세 화학 반응 기구 축소화)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is a challenging task to apply large detailed chemical mechanisms of fuel oxidation in simulation of complex combustion phenomena. There exist a few systematic methodologies to reduce detailed chemical mechanisms to smaller sizes involving less computational load. This research work concerns generation of a skeletal chemical mechanism by a directed relation graph with specified accuracy requirement. Two sequential stages for mechanism reduction are followed in a perfectly stirred reactor(PSR) for high temperature chemistry and to consider the autoignition delay time for low and high temperature chemistry. Reduction was performed for the detailed chemical mechanism of n-heptane consisting of 561 species and 2539 elementary reaction steps. Validation results show acceptable agreement for the autoignition delay time and the PSR calculation in wide parametric ranges of pressure, temperature and equivalence ratio.

A Numerical Study on the Combustion Phenmena in Porous Media( I ) (다공질 내부의 연소현상에 대한 수치적 연구( I ))

  • Lee, Yong-Il;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.328-335
    • /
    • 1996
  • The one-dimensional flame analysis was carried out to understand the combustion phenomena in porous media. The downstream as well as upstream solution corresponding to upper and lower solutions could be obtained. While upper flame temperature gets higher, lower flame temperature gets lower, as the flame approaches the central part of the combustor. The reason why upstream flame and downstream flame exist at the same flow condition is that the regions where net heat recirculation is identical exist in upstream and downstream of the combustor. In order for the downstream flame to be stabilized, more heats needed to be recirculated towards upstream because of larger radiation loss of downstream flame.

Acoustic, entropy and vortex waves in a cylindrical tube with variable section area (단면적이 변하는 실린더 관에서의 음향, 엔트로피 및 와류 파동)

  • Lebedinsky Ev. V.;Cho Gyu-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.27-35
    • /
    • 2004
  • In this paper a method for finding solution of acoustic, vortex and entropy wave-equations in a cylindrical tube with variable section area was suggested under the consideration of that the high frequency instability in a rocket engine combustion chamber is an acoustic phenomena, which is coupled with combustion reaction, and that a combustion chamber and exhaust nozzle are usually shaped cylindrically. As a consequence of that some method, which enable the quantitative analysis of the influence of entropy and vortex waves to acoustic wave, was suggested.

  • PDF

Dynamics of Coaxial Swirl Injectors in Combustion Environment (연소 조건하의 동축형 분사기의 동적 특성 고찰)

  • Seo Seonghyeon;Han Yeoung-Min;Lee Kwang-Jin;Kim Seung-Han;Seol Woo-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.282-287
    • /
    • 2004
  • Unielement combustion tests were conducted using coaxial bi-swirl injectors. Major experimental parameters were a recess length and a fuel-side swirl chamber. Combustion efficiency mainly depends on a mixing mechanism for the present coaxial swirl injectors. Low-frequency pressure excitations around 200Hz were observed for all injectors. However, dynamic behaviors considerably differ for an external and an internal mixing case controlled by a recess length. The internal mixing induces mixture to be biased at a specific frequency in a mass flow rate, which results in a relatively high amplitude of pressure fluctuations but results for the external mixing case show that fuel and oxidizer mixture flow carries more complicated, multiple wave characteristics due to broad mixing region as well as disintegration and merging phenomena of propellant films.

  • PDF