• Title/Summary/Keyword: Combustion Performance

Search Result 1,654, Processing Time 0.027 seconds

Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle (전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Patil, Mahesh Suresh;Cho, Chong-Pyo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.725-731
    • /
    • 2016
  • This study numerically investigates the thermal performance of a 2.0-kW butane-based combustion heating system for an electric vehicle under cold conditions. The system is used for cabin space heating and coolant-based battery thermal management. ANSYS CFX 17 software was used for parametric analysis. The mass flow rates of cold air and coolant were varied, and their effects were compared. The numerical results were validated with theoretical studies, which showed an error of 0.15%. As the outside air mass flow rates were increased to 0.005, 0.01, and 0.015 kg/s, the cabin supply air temperature decreased continuously while the coolant outlet temperature increased. When the coolant mass flow rates were increased to 0.005, 0.01 and 0.015 kg/s, the air temperature increased while the coolant outlet temperatures decreased. The optimal mass flow rates are discussed in a consideration of the requirements for high cabin heating capacity and efficient battery thermal management.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

A Study on Determination of Suspension Spring Coefficient of Electric UTV for Agricultural Use through Virtual Simulation (가상 시뮬레이션을 통한 농업용 전동 UTV의 서스펜션 스프링 계수 결정 연구)

  • Kim, Sang Cheol;Kim, Seong Hoon;Kim, Seung Wan
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.75-81
    • /
    • 2022
  • In order to respond to carbon neutrality and climate change in agriculture, agricultural machinery, which has been developed centered on internal combustion engines, needs to be converted to an electric-based technology that does not emit greenhouse gases. In this study, simulations for electric UTV suspension design were performed to reduce vibration and shock of electric UTV for agricultural use and to improve driving stability and control performance of the vehicle. The simulation was performed by dividing the tolerance load of the vehicle body and the loaded load state. The range of motion of the suspension spring of UTV is within 30% of the range of motion under condition B under tolerance, the displacement of the UTV suspension with full load is reduced from 264mm to 121mm, and the damping speed is 260mm/s to 300mm/s that it can be seen that the range of motion is within 60%. Suspension design of electric UTV for multi-purpose agricultural work is a very important factor for maintaining agricultural work ability in towing work such as tillage as well as driving and terrain adaptation. The results of this study can be usefully used to determine the spring parameters with the appropriate damping range so that the electric UTV can be used for various agricultural tasks.

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

Falcon 9 Type Korean RLV and GTO-LV Mission Design (Falcon 9 방식의 한국형 재사용 발사체 및 정지궤도 발사체 임무설계)

  • Lee, Keum-Oh;Seo, Daeban;Lim, Byoungjik;Lee, Junseong;Park, Jaesung;Choi, Sujin;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.32-42
    • /
    • 2022
  • The strategy to develop a launch vehicle family by bundling multiple rocket engines of a single type has been proven by SpaceX and their reusable fleet comprised of Falcon 9 and Falcon Heavy. In this study, we revisit a potential launch vehicle family out of a 35 tonf-class methalox staged combustion cycle engine and evaluate their utility and performance in various space missions. For example, a Korean version of Falcon 9 can deliver 4.7 tons of payload into 500 km SSO in an expendable mode while the payload is reduced to 2.16 tons in a sea-landing reusable mode. A Korean version of Falcon Heavy can deliver 4.4 tons into GTO when launched from the Naro Space Center, indicating that this common booster core configuration can handle Cheollian 2 albeit the high inclination. Once developed, the same methaloax engine can power the first-stage of smallsat launch vehicles and air launch vehicles.

Experimental Assessment of the Methanol Addition Effect on the Tribological Characteristics of Ni-based Alloy (메탄올 첨가에 따른 Ni 기반 합금의 트라이볼로지 특성 변화에 대한 실험적 연구)

  • Junemin Choi;Sangmoon Park;Youngjun Kim;Sunghoon Kim;Hyemin Kim;Jeongeon Park;JeongWon Yu;Myeonggyu Lee;Hyeonwoo Lee;Koo-Hyun Chung
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.49-55
    • /
    • 2023
  • Currently, the demand for green technologies toward a sustainable future is rapidly increasing due to growing concern over environmental issues. Methanol is biodegradable and can provide clean combustion to reduce sulfur oxide and nitrogen oxide emissions, and therefore it is a candidate fuel for marine engines. However, the effect of methanol on tribological characteristic degradation should be addressed for methanol-fueled engines. In this study, the methanol addition effects on tribological characteristic degradation is experimentally assessed using a pin-on-disk tribo-tester. Ni-based alloy is used as a target material due to its broad applicability as an engine component material. For a lubricant, engine oil with and without methanol are used. The tests are conducted for up to 10,000 cycles under boundary lubrication while the change in friction force is monitored. Additionally, the wear rate is determined based on laser scanning confocal microscope data. An additional test in which methanol is added at regular intervals is performed with an aim to directly observe its effect on friction. Overall, the friction coefficient increases slightly with increasing methanol concentration. Furthermore, the wear rate of the pin and disk increase significantly with methanol addition. The results also indicate that the friction increases instantaneously with methanol addition at the contacting interface. These findings may be useful for better understanding the methanol effect on the tribological characteristics of Ni-based alloys for methanol-fueled engines with improved performance.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

Fire Risk Prediction and Fire Risk Rating Evaluation of Four Wood Types by Comparing Chung's Equation-IX and Chung's Equation-XII (Chung's Equation-IX과 Chung's Equation-XII의 비교에 의한 목재 4종의 화재위험성 예측 및 화재위험성 등급 평가)

  • JiSun You;Yeong-Jin Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.200-208
    • /
    • 2024
  • Chung's equations-IX and Chung's equation-XII were utilized to predict the fire risk and evaluate fire risk ratings for four types of wood: camphor, cherry, rubber, and elm trees. The combustion tests were conducted using a cone calorimeter test method by ISO 5660-1 standards. The fire risk and fire risk rating (FRR) were compared for Fire Risk Index-IX (FRI-IX) and Fire Risk Index-XII (FRI-XII). The results yielded Fire Performance Index-XI (FPI-XI) ranging from 0.08 to 11.48 and Fire Growth Index-XI (FGI-XI) ranging from 0.67 to 111.89. The Fire Risk Index-XII (FRI-XII), indicating fire risk rating, exhibited an increasing order of cherry (0.45): Grade A (Ranking 5) < PMMA (1): Grade A (Ranking 4) < elm (1.23): Grade A (Ranking 3) < rubber (1.56): Grade A (Ranking 2) << camphor (148.23): Grade G (Ranking 1). Additionally, the fire risk index-IX (FRI-IX) was cherry (0): Grade A (Ranking 3) ≈ rubber (0): Grade A (Ranking 3) ≈ elm tree (0): Grade A (Ranking 3) < PMMA (1): Grade A (Ranking 2) << camphor tree (66.67): Grade G (Ranking 1). In general, camphor was found to have the highest fire risk. In conclusion, although the expression of the index is different as shown based on the standards of FRI-IX and FRI-XII, predictions based on fire risk assessment of combustible materials showed similar trends.

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine $CO_2$ solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion $CO_2$ capture technology to capture 2 ton $CO_2$/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/$tCO_2$ which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the $CO_2$ capture process developed by KEPCO research institute. And also it was expected that the cost of $CO_2$ avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale $CO_2$ capture plant.

0.1 MW Test Bed CO2 Capture Studies with New Absorbent (KoSol-5) (신 흡수제(KoSol-5)를 적용한 0.1 MW급 Test Bed CO2 포집 성능시험)

  • Lee, Junghyun;Kim, Beom-Ju;Shin, Su Hyun;kwak, No-Sang;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2016
  • The absorption efficiency of amine $CO_2$ absorbent (KoSol-5) developed by KEPCO research institute was evaluated using a 0.1 MW test bed. The performance of post-combustion technology to capture two tons of $CO_2$ per day from a slipstream of the flue gas from a 500 MW coal-fired power station was first confirmed in Korea. Also the analysis of the absorbent regeneration energy was conducted to suggest the reliable data for the KoSol-5 absorbent performance. And we tested energy reduction effects by improving the absorption tower inter-cooling system. Overall results showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate : 90%) suggested by IEA-GHG. Also the regeneration energy of the KoSol-5 showed about $3.05GJ/tonCO_2$ which was about 25% reduction in the regeneration energy compared to that of using the commercial absorbent MEA (Monoethanolamine). Based on current experiments, the KoSol-5 absorbent showed high efficiency for $CO_2$ capture. It is expected that the application of KoSol-5 to commercial scale $CO_2$ capture plants could dramatically reduce $CO_2$ capture costs.