• Title/Summary/Keyword: Combustion Load

Search Result 404, Processing Time 0.028 seconds

One-zone heat release analysis for IDI diesel engine (IDI 디젤기관의 단일영역 열발생량 계산)

  • Lee, S.Y.;Kim, G.B.;Choi, S.H.;Jeon, C.H.;Chang, Y.J.;Chun, K.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.830-836
    • /
    • 2001
  • An one-zone heat release analysis was studied for a 4 cylinder indirect diesel engine. The object of the study is to calculate the heat release accurately including the effect of specific heat ratio, heat transfer and crevice volume and to find out combustion characteristics of an indirect diesel engine cosidering the effect of both pressure in the main and swirl chambers. The integrated gross heat release values were close to the measured fuel energy at various full load operating conditions.

  • PDF

Accelerated Test Design for Crankshaft Reliability Estimation

  • Jung, D.H.;Pyun, Y.S.;Gafurov, A.;Chung, W.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.109-118
    • /
    • 2009
  • Crankshaft, the core element of the engine of a vehicle, transforms the translational motion generated by combustion to rotational motion. Its failure will cause serious damage to the engine so its reliability verification must be performed. In this study, the S-N data of the bending and torsion fatigue limits of a crankshaft are derived. To evaluate the reliability of the crankshaft, reliability verification and analysis are performed. For the purpose of further evaluation, the bending and torsion tests of the original crankshaft are carried out, and failure mode analysis is made. The appropriate number of samples, the applied load, and the test time are computed. On the basis of the test results, Weibull analysis for the shape and scale parameters of the crankshaft is estimated. Likewise, the $B_{10}$ life under 50% of the confidence level and the MTTF are exactly calculated, and the groundwork for improving the reliability of the crankshaft is laid.

  • PDF

A study on TDC crank angle determination by motoring pressure measurement (모터링 압력측정을 통한 상사점 결정방법에 관한 연구)

  • 한정옥;이영주;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.39-47
    • /
    • 1988
  • A disk photo sensor system was constructed and installed on engine for the crank angle measurement. Statically measured TDC crank angle data were compared with those obtained from engine motoring. Two groups of cylinder pressure data were compared each other, one measured by pressure transducer mounted flush on the combustion chamber and the other obtained with the help of spark plug type adaptor. A simple analysis on the gas flow in the spark plug type pressure transducer displayed reasonably good agreement with those from engine motoring tests. In various firing tests, the IMERs obtained from the spark plug type pressure transducer turned out to be higher than those from the flush mounted one at low engine speed while those two were nearly the same at high engine speed. As the engine load decreased the relative difference in IMEP measurement between the two types tended to be enlarged.

  • PDF

Optimization of Heavy-Duty Diesel Engine Operating Parameters Using Micro-Genetic Algorithms (유전알고리즘을 이용한 대형 디젤 엔진 운전 조건 최적화)

  • Kim, Man-Shik;Liechty, Mike P.;Reitz, Rolf D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • In this paper, optimized operating parameters were found using multi-dimensional engine simulation software (KIVA-3V) and micro-genetic algorithm for heavy duty diesel engine. The engine operating condition considered was at 1,737 rev/min and 57 % load. Engine simulation model was validated using an engine equipped with a high pressure electronic unit injector (HEUI) system. Three important parameters were used for the optimization - boost pressure, EGR rate and start of injection timing. Numerical optimization identified HCCI-like combustion characteristics showing significant improvements for the soot and $NO_X$ emissions. The optimized soot and $NO_X$ emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively. Moreover, the optimum results met EPA 2007 mandates at the operating point considered.

A Study on the Speed Control of the Diesel Engine with a Electro-Hydraulic Governor (전기유압식 조속기를 가진 디젤기관의 속도제어에 관한 연구)

  • Kim, Pil-Jae;Kang, Chang-Nam;Roh, Young-Oh;Park, Jin-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.706-708
    • /
    • 1998
  • Recently, it was very difficult for hydraulic governor to regulate the speed of high power engine with long stroke at low speed and low load, because of the jiggling phenomena by rough fluctuation of rotating torque and the hunting phenomena by long dead time occurred in fuel combustion process in the engine cylinder. In this paper, the influence of engine dead time is investigated by Nickels chart, and hybrid controller selected advantages of PID and fuzzy logic controller is provided to improve the performance of speed control of a low speed and long stroke diesel engine.

  • PDF

An Experimental Study on Emission Characteristics of a Semi-Bunsen Type Gas Burner (가스보일러용 세미 분젠형 버어너의 배기 특성 연구)

  • Jurng, J.S.;Park, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.353-358
    • /
    • 1995
  • The emission characteristics of a semi-Bunsen type burner for gas boilers were studied experimentally. The experimental results reveal that nitric oxide emission increases with fuel flow rate. It is linearly proportional to total fue flow rate at a small amount of fuel up to 0.4 liters per minute. It does not change significantly within the range of fuel flow rate from 0.4 to 1.2 liters per minute per nozzle and increases at large fuel flow rate. The carbon monoxide emission reveals to be dependent upon the fuel flow rate per each nozzle and the number of fuel injection nozzles. Diameter of an injection nozzle could have an effect on the emission characteristics of this type of burners. However, there is no marked change in the nitric oxide emission if the total fuel flow rate is same with different nozzle sizes.

  • PDF

Gas turbine Control using Neural-Network 2-DOF PID Controller

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.61-66
    • /
    • 1998
  • Since a gas turbine is made use of generating electricity for peak time, it is a very important to operate a peak time load with safety. The main components of a gas turbine are the compressor, the combustion chamber and the turbine. So, there also must be modeled a component of gas turbines for the control with safety but it is not easy. In this paper we acquire a transfer function based on the operations data of Gun-san gas turbine and study to apply Neural-Network 2-DOF PID controler to control loop of gas turbine to reduce phenomena caused by integral and derivative actions through simulation. We obtained satisfactory results to disturbances of subcontrol loop such as, fuel flow, air flow, turbine extraction temperature.

  • PDF

Real-time Active Control by Optical Analysis of Combustion Flame for Boiler Sysetm (화염의 광학적 분석에 의한 보일러의 실시간 능동 제어)

  • Choo, Seong-Ho;Yi, Choong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.287-288
    • /
    • 2007
  • This paper is for a Real-time Active Control System to operate a boiler. By sensing of flame we wanted to get status of a furnace as many as possible, like load, efficiency, and/or amount of pollutant. These data can be used to make optimal running point by controlling the ratio of air and fuel. So the last object is to make a closed actual control loop from optical head to valve controllers. The first job was to design and to develop a optical data acquisition system. including optical sensor module. And we gathered flame data in variable situations for taking the trend of flame against burning environment. Currently we are developing a general system model, designing some control strategy and testing this active control system.

  • PDF

A Study on the Emission Characteristics of NOx in Medium Speed Diesel Engine (중속 디젤기관의 질소산화물 배출특성에 관한 연구)

  • 우석근;윤건식;윤영환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.526-534
    • /
    • 2000
  • In this study, the characteristics of exhaust emissions in medium speed diesel engine under various operating conditions were investigated through experiments to derive the optimum conditions for minimizing the exhaust emissions, especially, nitrogen oxides. The 355 KW$\times$1200 rpm medium speed diesel engine was intensively examined to investigate the trend of exhaust emissions in case that the parameters affecting combustion conditions such as fuel injection timing, intake air temperature and pressure, engine speed and load were changed. The exhaust emissions for 9 sets of medium speed diesel engine were analyzed in addition. From this study, NOx level could be reduced by 30~50% through the adjustment of retarded fuel injection timing, lowered intake air temperature and increased charging air pressure.

  • PDF

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF