• 제목/요약/키워드: Combustion Field

검색결과 537건 처리시간 0.023초

Covalently-Bonded Solid Solution Formed by Combustion Synthesis

  • Ohyanagi, Manshi;Munir, Zuhair A.
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.250-257
    • /
    • 2000
  • The feasibility of synthesizing SiC-AlN solid solution by field-activated combustion synthesis was demonstrated. At lower fields of 8-16.5V/cm, composites of AlN-rich and SiC-rich phases were synthesized, but at fields of 25-30 V/cm, the product was a 2H structure solid solution. Combustion synthesis of the solid solution by nitridation of aluminum with silicon carbide under a nitrogen gas pressure of 4-8 MPa was also investigated. The maximum combustion temperature and wave propagation velocity were found to be influenced by the electric field in the field-activated combustion synthesis, and by the green density and nitrogen pressure in the combustion nitridation. In both cases the formation of solid solutions is complete within seconds, considerably faster than in conventional methods which require hours.

  • PDF

마일드연소의 이해와 응용 (Understanding and Application of MILD combustion)

  • 김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.281-282
    • /
    • 2014
  • Recently, studies on Mild combustion have grown in many combustion application fields in the international combustion society. Compared with international activities in this field, domestic study in Korea has not been activated yet. This brief review aims to explain some essences of fundamental physics of Mild combustion and to introduce some recent application techniques of them. Fundamental physics of Mild combustion has been usually broken down into three aspects [1]; physical, thermodynamic, and chemical aspects. A major portion of Mild combustion physics is related to HiTAC (High Temperature Air Combustion) or HiCOT (High Temperature Combustion Technology). Although definition of Mild combustion is easily accepted among combustion engineers, combustion control in Mild combustion may be difficult without understanding essential physics of it. To encourage the research in this field, some representative cases will be introduced, and related essential techniques will be explained.

  • PDF

모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회지
    • /
    • 제3권2호
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Model and Field Testing of a Heavy-Duty Gas Turbine Combustor

  • Ahn, Kook-Young;Kim, Han-Seok;Antonovsky, Vjacheslav-Ivanovich
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1319-1327
    • /
    • 2001
  • The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed 1:1 scale. The model experiments were executed at a lower pressure than that in a real gas turbine. Combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure and NOx emission were measured at partial and full loads for both model and on-site testing. The comparison of these items in the stand and field test results led to has the development of a method of calculation and the improvement of gas turbine combustors.

  • PDF

연소장내 화염계측 오차 평가 (Error Evaluation on Flame Measurement in Combustion Field)

  • 양영준;허태영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.167-169
    • /
    • 2014
  • Spray combustion has been used in many industrial fields, for instance, such as diesel engines, gas turbines and industrial furnaces, and furthermore various measurement techniques have been applied to elucidate the phenomenon of spray combustion. In order to measure simultaneously the droplet velocity and the droplet size of spray, Phase Doppler Anemometry (PDA) was frequently used in spray combustion. However, the measurement error is occurred due to existence of flame, which is considered as influencing the precision of measurement. Therefore, the purpose of this study is experimentally to conduct the systematic evaluation on the measurement error when PDA measurement is applied to combustion field.

  • PDF

FACS법에 의한 Fe-Al계 금속간화합물의 제조시 통전방식의 영향 (The Effects of Current Adjustment on the Preparation of Fe-Al Intermetallic Compounds by Field-Activated Combustion Synthesis)

  • 윤기석;정중채;원창환
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.680-687
    • /
    • 1999
  • Fe-Al계 금속간화합물이 FACS (Field-Activated Combustion Synthesis) 법에 의해 제조되었다. 이 계의 반응에 있어서 조성 (Fe:Al=3 : 1,2 : 1, 1 : 1.1 : 2, 1 : 3) , 성형압력 (150, 250, 350MPa), 저항 등이 조사되었는데. Al의 몰비, 성형압력, 전기장의 세가가 증가함에 따라서 연소온도와 연소속도는 증가하였다. 또한 이 계에 있어서 전류적용방식에 따른 반응에 대한 영향이 조사되었다. 전기장이 적용되지 않는 경우, 반응이 일어나기 위해서는 예열이 필요하였고, 예열을 하였을 경우라도 그 반응은 불안정연소파를 나타내어 완전한 반응이 이루어지지 않았다. 생성물은 X-ray, SEM, EDXS를 사용하여 그 구조와 조성을 관찰하였다

  • PDF

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

LES기반 연소모델과 Helmholtz 방정식을 이용한 LIMOUSINE 버너의 연소불안정 해석 (Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation)

  • 신영준;전상태;김용모
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.41-46
    • /
    • 2017
  • This study has numerically investigated the flame-acoustics interactions in the turbulent partially premixed flame field. In the present approach, in order to analyze the combustion instability, the present approach has employed the LES-based combustion model as well as the Helmholtz solver. Computations are made for the validation case of the partially premixed LIMOUSINE burner. In terms of the FFT data, numerical results are compared with experimental data. Moreover, Helmholtz equation in frequency domain is solved by combining CFD field data including the flight time from a nozzle to the flame zone. Based on numerical results, the detailed discussions are made for the essential features of the combustion instability encountered in the partially premixed burner.

제트 유동장에서의 마일드 연소 및 오염물질 배출특성에 관한 전산해석 연구 (Computational Study of the MILD Combustion and Pollutant Emission Characteristics in Jet Flow Field)

  • 김유정;송금미;오창보
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.60-65
    • /
    • 2012
  • The MILD combustion and pollutant emission characteristics were investigated computationally. The temperature of supplying air-stream and mixing rate (${\Omega}$) of exhaust gas in the air-stream were adjusted to investigate the effects of those parameters on the MILD combustion in jet flow field. The emission indices for NO (EINO) and CO (EICO) were introduced to quantify the amount of those species emitted from the combustion. The high-temperature region disappeared gradually as the mixing rate increased for fixed air-stream temperature. The EINO increased as the air-stream temperature became higher for fixed mixing rate, and the EINO decreased dramatically with increasing the mixing rate for each air-stream temperature condition. The EICO also decreased with increasing the mixing rate and it was nearly independent of air-stream temperature except for near ${\Omega}$ = 0.7. It was found that the CO supplied in the air-stream can be destroyed in the MILD combustion over the certain mixing rate.

모형 가스터빈 연소기에서 2차공기 주입이 연소장에 미치는 영향 (Effects of Secondary Air Injection in Combustion Field of Model Gas Turbine Combustor)

  • 김규성;임경달;이동형
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.171-176
    • /
    • 2000
  • This purpose of this study is to investigate the combustion emission characteristics on the effect of secondary air injection in combustion field of model gas turbine combustor changing excess air ratio. For this purpose, meantemperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and secondary air injection. As a result of this study, meantemperature, CO2 emission was decreased and CO emission increased by increasing the excess air ratio of secondary air. therefore, This paper showed the effect of Secondary air injection on flame structure, combustion emission characteristics.

  • PDF