• Title/Summary/Keyword: Combustion Delay

Search Result 282, Processing Time 0.036 seconds

An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • 이기형;김형민;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

Measurement of Ignition Delay Time of Jet Aviation Fuel (혼합 액체 연료인 항공유의 점화지연시간 측정에 관한 연구)

  • Han, Hee Sun;Wang, YuanGang;Kim, Chul Jin;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.35-40
    • /
    • 2017
  • Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.

Characteristics of Chemical Reaction and Ignition Delay in Hydrogen/Air/Diluent Mixtures (수소/공기/희석제 혼합기의 점화지연과 화학반응 특성연구)

  • Lee, Dong Youl;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Hydrogen is considered a cleaner energy source than fossil fuels. As a result, the use of hydrogen in daily life and economic industries is expected to increase. However, the use of hydrogen energy is currently limited because of safety issues. The rate of combustion of the hydrogen mixture is about seven times higher than that of hydrocarbon fuels. The hydrogen mixture is highly flammable and has a low minimum ignition energy. Therefore, it presents considerable risks for fire and explosions in all areas of hydrogen manufacturing, transportation, storage, and use. In this study, the auto-ignition characteristics of hydrogen were investigated numerically for diluted hydrogen mixtures. Auto-ignition temperature, a critical property predicting the fire and explosion risk in hydrogen combustion, was determined in well-stirred reactors. When N2 and CO2 were used to dilute the hydrogen/air mixture, the ignition delay time increased with increasing dilution ratios in both cases. The CO2-diluted mixtures exhibited a longer ignition delay than the N2-diluted mixtures. We also confirmed that lower initial ignition temperatures increased the ignition delay times at 950 K and above. Overall, the auto-ignition characteristics, such as the concentrations of participating species and ignition delay times, were primarily affected by the initial temperature of the mixture.

Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 고세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 2011
  • The aim of this study is to investigate the effects of aromatics and T90 temperature for high cetane number (CN) of diesel fuels on combustion and exhaust emissions in low-temperature diesel combustion in a 1.9 L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Four sets of fuels with CN 55, aromatic content of 20% or 45% (vol. %), and T90 temperature of $270^{\circ}C$ or $340^{\circ}C$ were tested. Given engine operating conditions, all the fuels showed the same tendency of decrease of PM with an increase of an ignition delay time. At the same ignition delay time, the fuels with high T90 produced higher PM. At the same MFB50% location the amount of NOx was similar for all the fuels. Furthermore, at the same ignition delay time the amounts of THC and CO were similar as well for all the fuels. The amount of THC and CO increased with an extension of the ignition delay time mainly because of the increase of fuel-air over-mixing.

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine (편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석)

  • 김홍석;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.

Comparison Study on Burning and Ignition Characteristics for Single Aluminum and Magnesium Particles (EDB에 의해 부양된 알루미늄과 마그네슘 단일 입자의 점화 및 연소 특성 비교 연구)

  • Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.311-316
    • /
    • 2010
  • The ignition and the burning characteristics of aluminum and magnesium particles ($30-110{\mu}m$ in diameter) isolated due to electrodynamic levitation were experimentally investigated. The burning time, the ignition delay time, the flame temperature, and the flame diameter were measured. The thermal radiation intensity was measured using the photomultiplier tube and the combustion history was monitored by high-speed cinematography. Two-wavelength pyrometry measured the temperature of the burning particles. The burning times of aluminum particles were measured approximately 5 to 8 times longer than those of magnesium particles. Exponents of $D^n$-law, for the burning rate of magnesium and aluminum particles of diameters less than $110{\mu}m$, are found to be 0.6 and 1.5, respectively. The instant of aluminum ignition is clearly distinguished with the ignition delay time little less than 10 ms, however the burning history of magnesium particle exhibits no distinct instant of the ignition. The ignition delay time of magnesium particle (less than $110{\mu}m$) were approximately shown in the range from 50 to 200 ns. The flame temperatures of single metal particles are lower than the boiling point of the oxide. The nondimensional flame diameters for magnesium are decreased with increasing of the diameter. The nondimensional flame diameters for aluminum are not changed significantly.

  • PDF