• Title/Summary/Keyword: Combustion Characteristic Velocity

Search Result 96, Processing Time 0.022 seconds

Low Pressure Test Results of Regenerative Cooling Combustion Chamber for 30tonf-Class Liquid Rocket Engine (30톤급 액체로켓엔진 재생냉각 연소기 저압 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.71-75
    • /
    • 2009
  • Test results of combustion chamber to verify the operation and the combustion performance at low pressure, design and off-design conditions for 30ton-class liquid rocket engine were described. The combustion chamber has nominal chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Effects of chamber pressure on combustion characteristic velocity are largely affected by mixture ratio. The specific impulse of combustion chamber is proportional to the chamber pressure regardless of the mixture ratios. The present results can be used as the base to predict the combustion performance of large sized chamber at high pressure while demonstrating the possibility of low pressure firing test of large sized chamber.

  • PDF

Performance Prediction of Rocket Engine Combustion and Estimation of Experimental Results (로켓 엔진의 연소 성능 예측 및 시험)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.718-724
    • /
    • 2000
  • A model for depicting the rocket engine combustion process is presented and several experiments near a design point are provided with a FOOF type of unlike impinging injector for a propellant combination of Jet A-1 fuel and liquid-oxygen. The model is based on the assumption that the vaporization is the rate-controlling combustion process. The effects of initial drop size and initial drop velocity are systematically shown and discussed. It is seen that in the midst of considered parameters the change of initial drop size is more sensitive to the performance. The proposed model describes qualitative trends of combustion process well despite of its simplicity.

The Combustion Characteristics with Supply Conditions of Propane Fuel at the Constant Volume Combustion Chamber (프로판 연료의 공급조건에 따른 정적연소실내 연소 특성에 관한 연구)

  • Park Kyoungsuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1172-1177
    • /
    • 2004
  • The emission control of automobile has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the combustion characteristics of propane mixture. The combustion characteristics was analyzed, with the change of supply conditions of propane fuel. Inside the combustion chamber, the maximum temperature increase with the initial pressure is going up. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux do not change much according to the theoretical correct mixture but it changes with the various initial temperature of the combustion chamber.

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee Jongkwang;Lee Dae Hoon;Choi Sunghan;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1264-1270
    • /
    • 2004
  • In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and the effect of geometry was evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee, Jong-Kwang;Lee, Dae-Hoon;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1280-1285
    • /
    • 2004
  • Microsystem technology has been applied to space technology and became one of the enabling technology by which low cost and high efficiency are achievable. Micro propulsion system is a key technology in the miniature satellite because micro satellite requires very small and precise thrust force for maneuvering and attitude control. In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

  • PDF

A Comparative Analysis for the Performance of 200 N-class Gaseous Methane-Liquid Oxygen Small Rocket Engine According to the Characteristic Length Variation (특성길이 변화에 따른 200 N급 기체메탄-액체산소 소형로켓엔진의 성능 비교 분석)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Ground hot-firing tests were conducted to analyze the combustion performance according to the characteristic lengths 1.37 m, 1.71 m, and 2.06 m of the combustion chamber in 200 N-class GCH4-LOx small rocket engine. Thrust, specific impulse, and characteristic velocity at the steady-state could be obtained as the key performance parameters of the rocket engine. The performance characteristics acquired through the test were compared and analyzed with the theoretical performance calculated from CEA analysis. Observation of the influence of characteristic length on the combustion performance indicates that an optimal characteristic length shall remain between 1.71 m and 2.06 m.

Combustion Performance of a Coaxial Porous Injector using Ethanol/N2O Propellant (동축형 다공성재 분사기의 에탄올/아산화질소 연소성능)

  • Kim, Dohun;Lee, Keonwoong;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2013
  • The gas jet from a coaxial porous injector for two-phase flows is discharged radially from the porous surface, which encloses the center liquid jet. Several hot-firing test using ethanol/nitrous oxide propellants was conducted to analyze the effect of oxidizer/fuel ratio on the combustion performance, and the uncertainty analysis was performed for the results. The characteristic velocity was affected by oxidizer/fuel ratio similarly with the results of CEA calculation except that the maximum characteristic velocity was appeared in the stoichiometric ratio. The characteristic velocity efficiency was increased as the oxidizer/fuel ratio increases.

Combustion Characteristics of Sub-scale Combustors on the variation of propellant mass flow and injector arrangement (분사기 배열과 추진제 유량 변화에 의한 축소형 연소기의 연소특성)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seong-Gu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.168-172
    • /
    • 2008
  • Hot firing tests of sub-scale combustors were carried out to study the characteristic velocity according to the variation of propellant mass flow and injector arrangement. Test results show that there exists an effective range of relative flow-rate density on the condition of similar combustion pressure and mixture ratio. Numerical analysis has also revealed that the increase of the distance between the outermost injector array and the cylindrical chamber wall with film cooling increases the region of low mixture ratio near combustion chamber wall and it decreases the characteristic velocity of the combustor. Thus, it was confirmed that these two factors play an important part in improving the performance of LRE combustor on a predetermined chamber pressure.

  • PDF

Combustion Characteristics of Hybrid Rocket Fuel with Tapered Grain Port Shape (경사진 포트 형상을 가진 하이브리드 로켓 연료의 연소 특성)

  • Kim, Jae-Woo;Kim, Soo-Jong;Kim, Jin-Kon;Sung, Hong-Gye;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.511-514
    • /
    • 2009
  • In this study, the combustion characteristics of hybrid rocket fuel with tapered grain port were studied. The regression rate was increased about 17.5% by using the convergence port shape fuel. On the other hand, in case of divergence port shape fuel, any notable difference of regression rate was not observed when compared with regression rate of the cylindrical port shape fuel. Also, in case of convergence port shape fuel, characteristic velocity efficiency was increased. From these results, one can notice that convergence port shape of hybrid rocket fuel can be effective configuration in terms of improvement of combustion efficiency and performance.

  • PDF

A Study on Combustion Characteristics of Paraffin Blended Fuel on Aluminum Particle Size (알루미늄 입자 크기에 따른 파라핀 혼합연료의 연소 특성 연구)

  • Ko, Soohan;Han, Seongjoo;Ryu, Sunghoon;Kim, Jinkon;Moon, Heejang;Kim, Junhyung;Ko, Seungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.791-796
    • /
    • 2017
  • In this study, the combustion characteristics of paraffin blended fuel on aluminum particle size were investigated. The combustion experiments were carried out using aluminum particles with an average particle size of 100 nm and $8{\mu}m$ and microcrystalline paraffin wax (Sasol 0907). A series of comparison was conducted on the regression rate, the pressure curve and the characteristic velocity of pure paraffin and paraffin blended fuels with aluminum particles. It was found that the micro-sized particles enhance the regression rate as the oxidizer mass flux increased. However, the nano-sized particles decrease the regression rate as the oxidizer mass flux is increased.

  • PDF