• Title/Summary/Keyword: Combustion/Cooling Performance

Search Result 122, Processing Time 0.026 seconds

A Study on the Optimum Design Parameters of the Thermostat for Coolant Temperature Control of an Automotive Engine (자동차용 기관의 냉각수 온도조절을 위한 서머스탯의 최적설계 변수설정에 관한 연구)

  • 박경석;신진식;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • It is widely recognized that exhaust emissions, fuel economy and engine torque are affected by engine temperature, and logic would suggest that a cooling system offering a better compromise of engine temperature would improve both overall engine performance and economy. Author measured coolant temperature of some parts and flow rate which are necessary to heat transfer in a engine. And Author determined parameters necessary for the optimum design of a thermostat to keep the best engine performance ; determined the optimum operating temperature of electric cooling fan. A summary of this study is followed. 1. Study of the effects of cooling condition to combustion character in a engine. 2. Analyze of heat transfer surrounding engine cylinders. 3. Study of the effects of cooling character to engine heat rejection, determination of the optimum collant temperature for keeping the optimum engine performance and determination of the optimum design of a thermostat for keeping that temperature.

  • PDF

Combustion Performance Results of Combustion Chamber for 30ton-f Class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 연소시험 성능결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.139-143
    • /
    • 2007
  • The overall results of combustion tests performed for a 30 tonf-class full-scale combustion chambers of a liquid rocket engine were described. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/so The combustion chamber is composed of mixing head, SUS baffle, baffle injector, ablative chamber, channel cooling chamber and regenerative cooling chamber. The test results show that the combustion characteristic velocity is in the range of 1673${\sim}$1730 m/sec and the specific impulse of the combustion chamber is in the range of 254${\sim}$263 sec. As the recess number of the injectors increases, the combustion characteristic velocity increases. And as the combustion characteristic velocity increases, the specific impulse of the combustion chamber also increases.

  • PDF

A Study on the Prediction for the Performance and the Size of the Vehicle Radiator (자동차 엔진 방열기의 뱅각 성능 및 방열 면적 예측에 관한 연구)

  • 박찬국;이종범;엄호룡;정우인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.117-127
    • /
    • 1997
  • To maintain the reasonable temperature in the engine is very important to keep the steady combustion state of engine and to prevent increasing of lubricant consump- tion, deteriorating of lubricant, shortening of the life time of engine and decreasing of material strength. The method of energy balance for devided elements of radiator is considered to analyse the performance of radiator. Th data of engine test and vehicle cooling tunnel test are applied to program for calculation of radiator outlet temperature, and this result is compared with outlet temperature of vehicle cooling tunnel test. As a result, the radiator outlet temperature by numerical analysis agrees well with that by experiment. It is concluded that this simulation program is available in developing the cooling system for a new car.

  • PDF

Research and Development Status of Combustion Chamber of Liquid Rocket Engine for KSLV-II (한국형발사체 액체로켓엔진 연소기 연구 개발 현황)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Kim, Jong-Gyu
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.291-294
    • /
    • 2012
  • The research and development status of combustion chamber of liquid rocjet engine for Korea Space Launch Vehicle(KSLV-II) are briefly described. The cold and hot firing tests of uni-element injector, the performance/heat flux measurement/hot firing tests of subscale combustion chamber and the performance/stability rating/regenerative cooling/hot fire tests of 30ton-class combustion chamber were successfully performed. Based on these results, the research and development of combustion chamber for 75ton-class liquid rocket engine are underway.

  • PDF

An Experimental Study on Effects of Cooling Airflow rate on the Automotive Cooling Performance (냉각공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Jin-Hyun;Lee, Hae-Chul;Park, Jong-Nam;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.950-954
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Coolong is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using air flow management techniques.

  • PDF

An Experimental Study on the Effects of the Automotive Cooling Performance by Cooling Airflow rate (II) (냉각 공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구(II))

  • Kim, J.H.;Lee, H.C.;Lee, M.H.;Park, J.N.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.940-945
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Cooling is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using airflow management techniques.

  • PDF

Study on the Combustion Characteristics of Subscale Liquid Rocket Combustion Chamber (축소형 액체로켓엔진 연소기의 연소특성에 대한 연구)

  • Kim Jong-Gyu;Lee Kwang-Jin;Song Ju-Young;Moon Il-Yoon;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.288-293
    • /
    • 2006
  • The combustion performances and characteristics of the subscale liquid rocket combustion chamber are discussed in this paper. Subscale combustion chamber is composed of mixing head, ablative cooling cylinder, and water cooling nozzle. The mixing head has eighteen coaxial swirl injectors and one center coaxial swirl injector for ignition. The mixing heads employing the injectors of low different recess length are considered in this paper. The results of the firing test, comparison of performance, and characteristics of static and dynamic pressures of the four different mixing heads are described. The characteristics of combustion at design and of design points are also discussed.

  • PDF

Experimental Study on Kerosene Heat Transfer Characteristics Using Simulating Cooling Channels (모사 냉각채널을 이용한 케로신 열전달 특성에 대한 실험적 연구)

  • Lee, Bom;Lee, Wongoo;Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.643-646
    • /
    • 2017
  • In a liquid rocket engine using hydrocarbon fuels, cooling of the combustion chamber wall is necessary to prevent the combustion chamber wall from melting or structurally deforming due to high heat flux. Among the various methods, regenerative cooling, which uses fuel as a coolant and then injects it into the combustion process, has good performance. This study investigated the heat transfer characteristics of kerosene as a coolant by varying the copper cross-sectional area, the flow rate in the channel, and the current applied to the channel. Convective heat transfer occurred rapidly when the cross-sectional area of the copper channel was small and when the kerosene flow velocity was fast.

  • PDF

Evaluation by Rocket Combustor of C/C Composite Cooled Structure for Combined-cycle Engine

  • Takegoshi, Masao;Ono, Fumiei;Ueda, Shuichi;Saito, Toshihito;Hayasaka, Osamu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.804-809
    • /
    • 2008
  • In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2900 K and heat flux to the combustion chamber wall was about 9 $MW/m^2$. No thermal damage was observed on the stainless steel tubes which were in contact with the C/C composite materials. Results of the heating test showed that such a metallic-tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure(also as a heat exchanger), as well as indicating the possibility of reducing the amount of the coolant even if the thermal load to the engine is high. Thus, application of the metallic-tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined cycle engine is expected.

  • PDF

Cooling Performance Analysis of a Sub-scale Calorimeter (축소형 칼로리미터의 냉각성능 해석)

  • 조원국;문윤완
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • A cooling performance analysis has been made in the 8-channel calorimeter based on sub-scale KSR-III engine. Three-dimensional heat transfer analysis in cooling channels has been performed using the heat flux distribution through the chamber wall predicted from axi-symmetric compressible flow inside the combustion chamber. The heat flux distribution is verified against the published literature. Presented for the development and operation of the calorimeter are the coolant pressure drop, coolant temperature rise and the maximum chamber wall temperature. Required coolant flow rate is determined for given chamber pressure. Cooling performance is also predicted for temperature dependant coolant properties.