• Title/Summary/Keyword: Combined visual servo control

Search Result 3, Processing Time 0.017 seconds

Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method (혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종)

  • Lee, Ho-Won;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

Development of Visual Servo Control System for the Tracking and Grabbing of Moving Object (이동 물체 포착을 위한 비젼 서보 제어 시스템 개발)

  • Choi, G.J.;Cho, W.S.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.96-101
    • /
    • 2002
  • In this paper, we address the problem of controlling an end-effector to track and grab a moving target using the visual servoing technique. A visual servo mechanism based on the image-based servoing principle, is proposed by using visual feedback to control an end-effector without calibrated robot and camera models. Firstly, we consider the control problem as a nonlinear least squares optimization and update the joint angles through the Taylor Series Expansion. And to track a moving target in real time, the Jacobian estimation scheme(Dynamic Broyden's Method) is used to estimate the combined robot and image Jacobian. Using this algorithm, we can drive the objective function value to a neighborhood of zero. To show the effectiveness of the proposed algorithm, simulation results for a six degree of freedom robot are presented.

  • PDF

A digital filter design applied to the manual tracking system to predict future position (차량의 미래위치 추정을 위한 수동추적 시스템의 디지털 필터 설계)

  • 박용운;강윤식;김상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1332-1335
    • /
    • 1996
  • It is very important to predict the future position for the heavy vehicle with evasive maneuvering. In this paper, we considered for the manual image tracking system. The vehicle images are received from gyro stabilized mirror system, pass through the optical lens, processed, and displayed on the TV monitor. The operator try to lay the reticle to the center of vehicle image. When the vehicle is moving, the mirror platform (actually the line of sight) should follow the vehicle and the angular rate information is picked up from the mirror stabilized system. This rate signal should be used to predict the future vehicle position. The problem is that the visual system of the human operator is in the closed loop system. The rate signals are disturbed by the operator. In addition, there are some non linearities concerned with the control handle bar and the servo control system. The proposed Kalman filter, combined with some modifications for operator disturbance rejection, improved the predication of the future vehicle position when compared with the conventional passive filter used.

  • PDF