• Title/Summary/Keyword: Combined transmission line

Search Result 96, Processing Time 0.034 seconds

Efficient Calculation of a Step Discontinuity for Planar Transmission Line Using Vector Finite Element Method and Mode Matching Method (벡터유한요소법과 모드정합법을 이용한 불연속 구조를 갖는 평면형 선로의 효율적 계산)

  • Kim, Young-Tae;Kim, Chul-Soo;Park, Jun-Seok;Ahn, Dal;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1817-1819
    • /
    • 2001
  • For an efficient calculation of scattering matrix of planar transmission line with step discontinuity. Mode Matching Method combined with Vector Finite Element Method is adopted. Calculating effective widths are replaced with their respective equivalent planar waveguide corresponding to the microstrip width, Propagation Constant is calculated from the Vector finite element. Mode matching method is used for deriving scattering parameters.

  • PDF

A Distance Relaying Algorithms Immune to Reactance Effect for Double-Circuit Transmission Line Systems (리액턴스 효과를 최소한 병행 2회선 송전선로 보호 거리계전 알고리즘)

  • 안용진;강상희;이승재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • For double-circuit transmission line systems, an accurate digital distance relaying algorithm immune to the reactance effect is proposed. The apparent impedance calculated by the distance relay is influenced by the combined reactance effect of the fault resistance and the load current as well as the mutual coupling effect caused by the zero-sequence current of the adjacent parallel circuit. To compensate the magnitude and phase of the estimated impedance, this algorithm uses phase angle difference between the zero(positive) sequence of the both side of the system seperated by the fault point. The impedance measuring algorithm presented used a current distribution factor to compensate mutual coupling effect instead of the collected zero-sequence current of the adjacent parallel circuit.

  • PDF

OFDM Modulation Transmission Characteristic of Acoustic Signal on Power Line Channel (전력선 채널에서 음향신호의 OFDM 변조 전송 특성)

  • Heo, Yoon-Seok
    • The Journal of Information Technology
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • This paper is about power line communication(PLC) over the low power voltage grid. The main advantage with power line communication is the use of an existing infrastructure. The PLC channel can be modeled as having multi-path propagation with frequency-selective fading, typical power lines exhibit signal attenuation increasing with length and frequency. OFDM(Orthogonal Frequency Division Multiplexing) is a modulation technique where multiple low data rate carriers are combined by a transmitter to form a composite high data rate transmission. The performance in consideration of the multi-path(echoes) powerline scheme is analyzed and verified by computer simulation.

  • PDF

Measurement and Analysis of Line Impedance in Underground Cables (지중케이블 선로 임피던스 실측 및 분석)

  • Ha, C.W.;Kim, J.N.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.205-207
    • /
    • 2003
  • The line impedance is important data that is applied in all analysis fields of electric power system like power flow, fault current, stability and relay calculation etc. Usually, impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistance. Therefore, if there is a fault in cable system, these terms will severely be caused much error to calculation of impedance. Therefore, the line impedance were measured for this study in an actual power system of underground cables, and were analyzed by a generalized circuit analysis program EMTP for comparison with the measured value. These analysis result is considered to become foundation of impedance calculation for underground cable.

  • PDF

Line Impedance Analysis of Underground Cable in Power Plant (발전소에 포설된 케이블 선로 임피던스 분석)

  • Ha, C.W.;Han, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.612-613
    • /
    • 2007
  • The line impedance is important data that are applied in all analysis fields of electric power system such as power flow, fault current, stability and relay calculation etc. Usually, the impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, the impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistances. Therefore, if there is a fault in cable system, these terms will severely be caused many errors for calculating impedance. In this paper, the line impedance is measured in a power system of underground cables, and is analyzed by a generalized circuit analysis program, EMTP(Electromagnetic Transient Program), for comparison with the measured value. These analysis results are considered to become foundation of impedance calculation for underground cables.

  • PDF

Analysis of Overvoltage and Reduction Methods of Insulation Joint Box in Underground Power Cable Systems (지중송전케이블계통에서 절연통의 과전압 해석 및 억제대책 검토)

  • Hong, Dong-Seok;Jeong, Chae-Gyun;Lee, Jong-Beom;Seo, Jae-Ho;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • This paper describes the overvoltage analysis and reduction methods of insulation joint boxes in underground transmission power cables when direct lightning surge strikes to overhead transmission line. An actual 154kV combined transmission line with underground Power cables was modelled in ATPDraw for simulation. Simulations were performed to analyze the overvoltage between insulation joint boxes, sheath-to-ground voltage according to the distance between cable conductors, cable lengths, burying types, CCPU connection types. The most effective method to reduce the induced overvoltage of Insulation joint boxes was proposed. It is evaluated that the proposed reduction method riven from the detailed simulations can be effectively applied to the actual underground power cable systems.

A Novel Algorithm for Fault Classification in Transmission Lines using a Combined Adaptive Network-based Fuzzy Inference System (Neuro-fuzzy network을 이용한 고장 검출 및 판별 알고리즘에 관한 연구)

  • Yeo, S.M.;Kim, C.H.;Chai, Y.M.;Choi, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.252-254
    • /
    • 2001
  • Accurate detection and classification of faults on transmission lines is vitally important. High impedance faults(HIF) in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System(ANFIS). The performance of the proposed algorithm is tested on a typical 154[kV] Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

A Study on the Technique of Fault Classification in Transmission Lines Using a Combined Adaptive Network-Based Fuzzy Inference System (ANFIS를 이용한 송전선로의 고장판별 기법에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.417-423
    • /
    • 2001
  • This paper proposes a technique for fault detection and classification for both LIF(Low Impedance Fault)s and HIF(High Impedance Fault)s using Adaptive Network-based Fuzzy Inference System(ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square(RMS) values of 3-phase currents and zero sequence current. The performance of the proposed technique is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classily faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

Array Antenna Design for Ku-Band Terminal of L.E.O Satellite Communication

  • Kang, Seo;Kang, JeongJin;Rothwell, Edward J.
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.41-46
    • /
    • 2022
  • This study is a Ku-band array antenna for the manufacture of low-orbit satellite communication terminals, designed to have miniaturization, high gain, and wide beam width. The transmission of low-orbit satellite communication has a right-rotating circularly polarized wave, and the reception has a left-rotating circularly polarized wave. The 4×8 array antenna was separated for transmission and reception, and it was combined with the RF circuit part of the transmitter and receiver, and was terminated in the form of a waveguide for RF signal impedance matching in the form of a transition from the microstrip line to the waveguide. The 30° beam width of the receiver maximum gain of 19 dBi and the 29° beam width of the transmitter maximum gain of 18 dBi are shown. Through this antenna configuration, the system was configured to suit the low-orbit satellite transmission/reception characteristics.

Combined Design of PSS and STATCOM Controllers for Power System Stability Enhancement

  • Rohani, Ahmad;Tirtashi, M. Reza Safari;Noroozian, Reza
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.734-742
    • /
    • 2011
  • In this paper a robust method is presented for the combined design of STATCOM and Power System Stabilizer (PSS) controllers in order to enhance the damping of the low frequency oscillations in power systems. The combined design problems among PSS and STATCOM internal ac and dc voltage controllers has been taken into consideration. The equations that describe the proposed system have been linearized and a Fuzzy Logic Controller (FLC) has been designed for the PSS. Then, the Particle Swarm Optimization technique (PSO) which has a strong ability to find the most optimistic results is employed to search for the optimal STATCOM controller parameters. The proposed controllers are evaluated on a single machine infinite bus power system with the STATCOM installed in the midpoint of the transmission line. The results analysis reveals that the combined design has an excellent capability in damping a power system's low frequency oscillations, and that it greatly enhances the dynamic stability of power systems. Moreover, a system performance analysis under different operating conditions and some performance indices studies show the effectiveness of the combined design.